−xdx=ydy=2du
- First equation
−xdx=ydy∫−xdx=∫ydyln∣xy∣=ln]C∣xy=C;
2 second equation
ydy=2du∫ydy=∫2duln∣y∣+C=2uu−ln(y2)=C
So we have two integrals of the charactestic system:
xy=C1;
u−ln(y2)=C2
Therefore general solution has form
F(xy,u−ln(y2))=0
or u=ln(y2)+H(x⋅y)
where H(t)- any differentable function
Comments