Question #243015
Find the general solution of yuy-xux=2
1
Expert's answer
2021-09-28T10:03:51-0400

dxx=dyy=du2\frac{dx}{-x}=\frac{dy}{y}=\frac{du}{2}

  1. First equation

dxx=dyydxx=dyylnxy=ln]Cxy=C;\frac{dx}{-x}=\frac{dy}{y}\\ \int \frac{dx}{-x}=\int \frac{dy}{y}\\ ln|xy|=ln]C|\\ xy=C;

2 second equation

dyy=du2dyy=du2lny+C=u2uln(y2)=C\frac{dy}{y}=\frac{du}{2}\\ \int \frac{dy}{y}=\int \frac{du}{2}\\ ln|y|+C=\frac{u}{2}\\ u-ln(y^2)=C

So we have two integrals of the charactestic system:

xy=C1;xy=C_1;

uln(y2)=C2u-ln(y^2)=C_2

Therefore general solution has form

F(xy,uln(y2))=0F\left( xy, u-ln(y^2) \right)=0

or u=ln(y2)+H(xy)u=ln(y^2)+H\left( x\cdot y \right)

where H(t)- any differentable function


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS