Given the differential equation
(x−y)p+(y−x−z)q=zConsider a quasilinear equation
a(x,y,z)p+b(x,y,z)q=c(x,y,z)
By Lagrange’s method the auxiliary equations are as following:
a(x,y,z)dx=b(x,y,z)dy=c(x,y,z)dz
So, for the given quasilinear equation we come to the system in the symmetric form
(x−y)dx=y−(x+z)dy=zdzOne of a way to solve the system in symmetric form is to use the equal fractions property
b1a1=b2a2=b3a3=…=λ1b1+λ2b2+⋯+λnbnλ1a1+λ2a2+⋯+λnanIn our case, Choosing λ1=λ2=λ3=1 as multipliers, each fraction on
(x−y)dx=y−(x+z)dy=zdz=1⋅(x−y)+1⋅(y−x−z)+z1⋅dx+1⋅dy+1⋅dz(x−y)dx=y−(x+z)dy=zdz=0dx+dy+dz⟶d(x+y+z)=0⟶x+y+z=C1
Take the last two fractions of the auxiliary equation and using x+y+z=C1 we get
⎩⎨⎧y−(x+z)dy=zdzx+y+z=C1⟶⎩⎨⎧y−(C1−y)dy=zdz(x+z)=C1−y∫2y−C1dy=∫zdz⟶2ln∣2y−C1∣=ln∣z∣+ln∣C2∣⟶ln∣2y−C1∣−2ln∣z∣=2ln∣C2∣ln∣∣z22y−C1∣∣=ln∣C3C22∣⟶z22y−(x+y+z)=C3z2y−x−z=C3We have found two integrals for the given equation
⎩⎨⎧x+y+z=C1z2y−x−z=C3Therefore, any integral surface of the differential equation (x−y)p+(y−x−z)q=z is described by the equation
φ(C1,C3)=0⟶φ((x+y+z),z2y−x−z)=0is the general integralwhere φ is an arbitrary smooth function.
Particular solution:
A particular solution through the circle z=1,x2+y2=1
⎩⎨⎧x+y+z=C1z2y−x−z=C3z=1x2+y2=1⟶{x+y+1=C1y−x−1=C3{x+y+1=C1y−x−1=C3⟶⎩⎨⎧y=2C1+C3x=2C1−C3−1
Substituting the found expressions into the second condition
x2+y2=1⟶(2C1−C3−1)2+(2C1+C3)2=14C12−2C1C3+C32−(C1−C3)+1+4C12+2C1C3+C32=142C12+2C32−C1+C3=0C12+C32−2C1+2C3=0C1(C1−2)+C3(C3+2)=0Since, φ(C1,C3)=0 , so
φ(C1,C3)=C1(C1−2)+C3(C3+2)−Particular solution
Conclusion,
⎩⎨⎧x+y+z=C1z2y−x−z=C3⟶(x+y+z)(x+y+z−2)+z2y−x−z⋅(z2y−x−z+2)=0ANSWER
φ((x+y+z),z2y−x−z)=0is the general solutionParticular solution is(x+y+z)(x+y+z−2)+z2y−x−z⋅(z2y−x−z+2)=0
Comments