Question #241112
(2y ^ 2 + 3x) * d * x + 2xydy = 0 .
1
Expert's answer
2021-09-23T17:28:18-0400

(2y2+3x)dx+2xydy=0M=2y2+3xy,  N=2xyMy=4yNx=2yThus the differential equation is not exact.But, MyNxN=1x is a function of x. I.F=e1xdx=elnx=xMultiply the original equation by the integrating factor(2xy2+3x2)dx+2x2ydy=0My=4xy=Nx=4xyThen, it is exactFx=MFx=2xy²+3x2Integrate both sides with respect to xF=x2y2+x3+Φ(y)Differentiate w.r.t yFy=2x2y+Φ(y)2x2y=2x2y+Φ(y)Φ(y)=0Φ(y)=C    F=x2y2+x3+C(2y^2+3x)dx+2xydy=0\\ M=2y^2+3xy,~~N=2xy\\ M_y=4y\neq N_x=2y\\ \text{Thus the differential equation is not exact.}\\ \text{But, }\\ \frac{M_y-N_x}{N}=\frac{1}{x} \text{ is a function of x. }\\ I.F= e^{\int\frac{1}{x}dx}=e^{\ln x}=x\\ \text{Multiply the original equation by the integrating factor}\\ (2xy^2+3x^2)dx+2x^2ydy=0\\ M_y=4xy=N_x=4xy\\ \text{Then, it is exact}\\ F_x=M\\ F_x=2xy^²+3x^2\\ \text{Integrate both sides with respect to } x\\ F=x^2y^2+x^3+\Phi(y)\\ \text{Differentiate w.r.t } y\\ F_y=2x^2y+\Phi'(y)\\ 2x^2y=2x^2y+\Phi'(y)\\ \Phi'(y)=0\\ \Phi(y)=C\\ \implies F=x^2y^2+x^3+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS