(2y2+3x)dx+2xydy=0M=2y2+3xy, N=2xyMy=4y=Nx=2yThus the differential equation is not exact.But, NMy−Nx=x1 is a function of x. I.F=e∫x1dx=elnx=xMultiply the original equation by the integrating factor(2xy2+3x2)dx+2x2ydy=0My=4xy=Nx=4xyThen, it is exactFx=MFx=2xy²+3x2Integrate both sides with respect to xF=x2y2+x3+Φ(y)Differentiate w.r.t yFy=2x2y+Φ′(y)2x2y=2x2y+Φ′(y)Φ′(y)=0Φ(y)=C⟹F=x2y2+x3+C
Comments