Question #241109
e ^ (- x) * d * y - (e ^ (- x) * y + y ^ 2) * d * x = 0 .
1
Expert's answer
2021-09-23T17:17:09-0400
exdy(exy+y2)dx=0e^{-x}dy-(e^{-x}y+y^2)dx=0

yy=exy2y'-y=e^xy^2

u=y1n=y12=y1u=y^{1-n}=y^{1-2}=y^{-1}

u=y2yu'=-y^{-2}y'

uu=ex-u'-u=e^x

μ(x)=ex\mu(x)=e^x

exu+exu=e2xe^xu'+e^xu=-e^{2x}

(exu)=e2x(e^xu)'=-e^{2x}

Integrate


exu=(e2x)dxe^xu=\int(-e^{2x})dx

exu=12e2x+C1e^xu=-\dfrac{1}{2}e^{2x}+C_1

u=12ex+C1exu=-\dfrac{1}{2}e^{x}+C_1e^{-x}

y(x)=112ex+C1exy(x)=\dfrac{1}{-\dfrac{1}{2}e^{x}+C_1e^{-x}}

y(x)=2exCe2xy(x)=\dfrac{2e^x}{C-e^{2x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS