Question #240527

In an R-L-C series circuit, the differential equation for the instantaneous charge q(t) on the capacitor is   2 2   d q dq q L R Et dt dt C . Determine the charge q(t) and current i(t) for a circuit with R  10 ohm, L = 1 henry, C = 2 10 farad and E(t) = 50 10 cos t volts. What is the steady-state current for this circuit?


1
Expert's answer
2021-09-23T17:42:15-0400
1d2qdt2+10dqdt+q102=50cos(10t)1\dfrac{d^2q}{dt^2}+10\dfrac{dq}{dt}+\dfrac{q}{10^{-2}}=50\cos(10t)

Homogeneous differential equation


d2qdt2+10dqdt+100q=0\dfrac{d^2q}{dt^2}+10\dfrac{dq}{dt}+100q=0

Corresponding (auxiliary) equation


r2+10r+100=0r^2+10r+100=0

D=(10)24(1)(100)=300D=(10)^2-4(1)(100)=-300

r=10±3002(1)=5±53ir=\dfrac{-10\pm\sqrt{-300}}{2(1)}=-5\pm 5\sqrt{3}i

The general solution of the homogeneous differential equation is


qh=c1e5tcos(53t)+c2e5tsin(53t)q_h=c_1e^{-5t}\cos(5\sqrt{3}t)+c_2e^{-5t}\sin(5\sqrt{3}t)

Find the particular solution of the non homogeneous differential equation


qp=Acos(10t)+Bsin(10t)q_p=A\cos(10t)+B\sin(10t)

qp=10Asin(10t)+10Bcos(10t)q_p'=-10A\sin(10t)+10B\cos(10t)

qp=100Acos(10t)100Bsin(10t)q_p''=-100A\cos(10t)-100B\sin(10t)

Substitute


100Acos(10t)100Bsin(10t)100Asin(10t)-100A\cos(10t)-100B\sin(10t)-100A\sin(10t)

+100Bcos(10t)+100Acos(10t)+100Bsin(10t)+100B\cos(10t)+100A\cos(10t)+100B\sin(10t)

=50cos(10t)=50\cos(10t)

100B=50100B=50

A=0A=0

The particular solution of the non homogeneous differential equation


qp=12sin(10t)q_p=\dfrac{1}{2}\sin(10t)

The general solution of the given differential equation


q(t)=c1e5tcos(53t)+c2e5tsin(53t)+12sin(10t)q(t)=c_1e^{-5t}\cos(5\sqrt{3}t)+c_2e^{-5t}\sin(5\sqrt{3}t)+\dfrac{1}{2}\sin(10t)

Then


i(t)=dqdt=5c1e5tcos(53t)5c2e5tsin(53t)i(t)=\dfrac{dq}{dt}=-5c_1e^{-5t}\cos(5\sqrt{3}t)-5c_2e^{-5t}\sin(5\sqrt{3}t)

53c2e5tsin(53t)+53c2e5tcos(53t)-5\sqrt{3}c_2e^{-5t}\sin(5\sqrt{3}t)+5\sqrt{3}c_2e^{-5t}\cos(5\sqrt{3}t)

+5cos(10t)+5\cos(10t)

tt\to\infin

 The steady-state current for this circuit is


isteadystate=5cos(10t)i_{steady-state}=5\cos(10t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS