Question #240158

Find the general solution to

y'' − y'− 2y = 2e3x

1
Expert's answer
2021-09-22T00:47:17-0400

The general solution to the given differential equation is y=yp(x)+yc(x)where yp(x) represents particular solution and yc(x) represents the complimentary solution.The characteristic equation is given by y2y2Hence y = -1 and y = 2, therefore the complimentary solution is given byyc=C1ex+C2e2xyp(t)=Ae3x,yp(t)=3Ae3x,yp(t)=9Ae3xSubstituting the above into the given differential equation, we have9Ae3x3Ae3x2Ae3x=2Ae3x    A=12yp(x)=12e3x    y=C1ex+C2e2x+12e3x\text{The general solution to the given differential equation is }\\ y = y_p(x) + y_c(x)\\ \text{where $y_p(x)$ represents particular solution and $y_c(x)$ represents the complimentary }\\ \text{solution.}\\ \text{The characteristic equation is given by }y^2-y-2\\ \text{Hence y = -1 and y = 2, therefore the complimentary solution is given by}\\ y_c = C_1e^{-x}+C_2e^{2x}\\ y_p(t) = Ae^{3x}, y'_p(t) = 3Ae^{3x}, y''_p(t) = 9Ae^{3x}\\ \text{Substituting the above into the given differential equation, we have}\\ 9Ae^{3x}-3Ae^{3x}-2Ae^{3x}=2Ae^{3x}\\ \implies A = \frac{1}{2}\\ \therefore y_p(x)= \frac{1}{2}e^{3x}\\ \implies y = C_1e^{-x}+C_2e^{2x}+\frac{1}{2}e^{3x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS