Question #240082

dx/2xz=dy/2yz=dz/z^2-x^2-y^2


1
Expert's answer
2021-09-22T00:01:41-0400

dx2xz=dy2yz=dzz2x2y2\frac{dx}{2xz}=\frac{dy}{2yz}=\frac{dz}{z^2-x^2-y^2}

The first equation gives

dxx=dyy\frac{dx}{x}=\frac{dy}{y}, i.e. xdyydxxy=xyd(yx)=0\frac{xdy-ydx}{xy}=\frac{x}{y}d(\frac{y}{x})=0,

d(yx)=0d(\frac{y}{x})=0

yx=k=const\frac{y}{x}=k={\rm const}

The second equation gives

dxx=2zdzz2x2y2=dz2z2(1+k2)x2\frac{dx}{x}=\frac{2zdz}{z^2-x^2-y^2}=\frac{dz^2}{z^2-(1+k^2)x^2}

xdz2(z2(1+k2)x2)dx=0xdz^2-(z^2-(1+k^2)x^2)dx=0

xdz2z2dxx2(1+k2)dx=0\frac{xdz^2-z^2dx}{x^2}-(1+k^2)dx=0

d(z2x(1+k2)x)=0d(\frac{z^2}{x}-(1+k^2)x)=0

z2x(1+k2)x=C\frac{z^2}{x}-(1+k^2)x=C

z2(1+k2)x2=Cxz^2-(1+k^2)x^2=Cx

z2x2y2=Cxz^2-x^2-y^2=Cx

The general integral surface of the given ODE has an equation determined by an arbitrary differentiable function Φ\Phi of (k,C)(k,C) :

Φ(k,C)=Φ(yx,z2x2y2x)=0\Phi(k,C)=\Phi(\frac{y}{x},\frac{z^2-x^2-y^2}{x})=0


Answer. Φ(yx,z2x2y2x)=0\Phi(\frac{y}{x},\frac{z^2-x^2-y^2}{x})=0, where Φ\Phi is an arbitrary differentiable function.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS