Use the linearity property of Laplace transform to find L[5e-2t + t + 2e2t]
L(5e−2t+t+2e2t)=L(5e−2t)+L(t)+L(2e2t)=5L(e−2t)+L(t)+2L(e2t)=5s+2+1s2+2s−25(s3−2s2)+s2−4+2(s3+2s2)(s2−4)s2=7s3−5s2−4(s2−4)s2\mathcal{L}(5e^{-2t} + t + 2e^{2t})\\ =\mathcal{L}(5e^{-2t}) + \mathcal{L}(t) + \mathcal{L}(2e^{2t})\\ =5\mathcal{L}(e^{-2t})+\mathcal{L}(t)+2\mathcal{L}(e^{2t})\\ =\frac{5}{s+2}+\frac{1}{s^2}+\frac{2}{s-2}\\ \frac{5(s^3-2s^2)+s^2-4+2(s^3+2s^2)}{(s^2-4)s^2}\\ =\frac{7s^3-5s^2-4}{(s^2-4)s^2}L(5e−2t+t+2e2t)=L(5e−2t)+L(t)+L(2e2t)=5L(e−2t)+L(t)+2L(e2t)=s+25+s21+s−22(s2−4)s25(s3−2s2)+s2−4+2(s3+2s2)=(s2−4)s27s3−5s2−4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments