Question #239732

Use the linearity property of Laplace transform to find L[5e-2t + t + 2e2t]


1
Expert's answer
2021-09-23T17:15:05-0400

L(5e2t+t+2e2t)=L(5e2t)+L(t)+L(2e2t)=5L(e2t)+L(t)+2L(e2t)=5s+2+1s2+2s25(s32s2)+s24+2(s3+2s2)(s24)s2=7s35s24(s24)s2\mathcal{L}(5e^{-2t} + t + 2e^{2t})\\ =\mathcal{L}(5e^{-2t}) + \mathcal{L}(t) + \mathcal{L}(2e^{2t})\\ =5\mathcal{L}(e^{-2t})+\mathcal{L}(t)+2\mathcal{L}(e^{2t})\\ =\frac{5}{s+2}+\frac{1}{s^2}+\frac{2}{s-2}\\ \frac{5(s^3-2s^2)+s^2-4+2(s^3+2s^2)}{(s^2-4)s^2}\\ =\frac{7s^3-5s^2-4}{(s^2-4)s^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS