Question #239718

Given that p(x) = −2 is a particular solution to y'' − 3y' − 4y = 8, write the general solution and verify that the general solution satisfies the equation. 


1
Expert's answer
2021-09-21T03:08:11-0400

The characteristic equation k23k4=0k^2-3k-4=0 of the homogeneous differential equation y3y4y=0y'' − 3y' − 4y=0 is equivalent to (k+1)(k4)=0,(k+1)(k-4)=0, and hence has the roots k1=1, k2=4.k_1=-1,\ k_2=4. Since p(x)=2p(x) = −2 is a particular solution, we conclude that the general solution of

y3y4y=8y'' − 3y' − 4y=8 is y=C1ex+C2e4x2.y=C_1e^{-x}+C_2e^{4x}-2.


Let us verify that the general solution satisfies the equation. It follows that y=C1ex+4C2e4x, y=C1ex+16C2e4x.y'=-C_1e^{-x}+4C_2e^{4x},\ y''=C_1e^{-x}+16C_2e^{4x}. Therefore,

C1ex+16C2e4x3(C1ex+4C2e4x)4(C1ex+C2e4x2)=C1ex+16C2e4x+3C1ex12C2e4x4C1ex4C2e4x+8=8.C_1e^{-x}+16C_2e^{4x}− 3(-C_1e^{-x}+4C_2e^{4x})− 4(C_1e^{-x}+C_2e^{4x}-2)\\ =C_1e^{-x}+16C_2e^{4x}+3C_1e^{-x}-12C_2e^{4x}− 4C_1e^{-x}-4C_2e^{4x}+8\\ =8.

Consequently, y=C1ex+C2e4x2y=C_1e^{-x}+C_2e^{4x}-2 indeed is the general solution of the differential equation

y3y4y=8.y'' − 3y' − 4y=8.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS