Question #239716

Given that p(x) = x is a particular solution to the differential equation y'' + y = x write the generalized solution and check by verifying that the solution satisfies the equation.


1
Expert's answer
2021-09-22T00:44:53-0400

The characteristic equation for the given differential equation is given byy2+1=0    y=±iHence the complimentary solution is given byy=C1eix+C2eix    yc(x)=C1sinx+C2cosxThe general solution is given by yc(x)+yp(x)yp(x) is already given, that is, x    y=C1sinx+C2cosx+xLet y(x) = x be a solution, therefore y(x)=1 and y(x)=0Hence substituting into the given differential equation, we havey+y=xShowing that y = x is a solution of the given differential equation\text{The characteristic equation for the given differential equation is given by}\\ y^2+1 = 0\\ \implies y = \pm i\\ \text{Hence the complimentary solution is given by}\\ y = C_1e^{ix} + C_2e^{-ix}\\ \implies y_c(x) = C_1\sin x + C_2 \cos x\\ \text{The general solution is given by $y_c(x) + y_p(x)$}\\ \text{$y_p(x)$ is already given, that is, x}\\ \implies y = C_1 \sin x + C_2 \cos x+ x\\ \text{Let y(x) = x be a solution, therefore $y'(x)=1$ and $y''(x) = 0$}\\ \text{Hence substituting into the given differential equation, we have}\\ y'' + y = x\\ \text{Showing that y = x is a solution of the given differential equation}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS