Question #239692
Find the Wronskian of the following set of function
{sin 3x,cos 3x}
1
Expert's answer
2021-09-22T00:42:35-0400

We consider y1=sin3xy_1=\sin 3x and y2=cos3xy_2=\cos 3x . Then the requested wronskian is:


W(y1,y2)=y1y2y1y2=y1y2y1y2W(y_1,y_2)=\begin{vmatrix} y_1 & y_2\\ y_1' & y_2' \end{vmatrix}=y_1y_2'-y_1'y_2

y1=sin3xy1=3cos3xy2=cos3xy2=3sin3x}\left. \begin{array}{l} y_1=\sin 3x\Rightarrow y_1'=3\cos 3x\\ y_2=\cos 3x\Rightarrow y_2'=-3\sin 3x \end{array} \right\}

Substituting the latter into the Wronskian, we obtain:


W(sin3x,cos3x)=sin3xcos3x3cos3x3sin3x=3sin23x+3cos23x=W(\sin 3x, \cos 3x)=\begin{vmatrix} \sin 3x & \cos 3x\\ 3\cos 3x & -3\sin 3x \end{vmatrix}=-3\sin^23x+3\cos^2 3x=

=3(cos23xsin23x)=3cos(23x)=3cos6x=3(\cos^2 3x-\sin^2 3x)=3\cos (2\cdot 3x)=\boxed{3\cos 6x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS