We consider y1=sin3x and y2=cos3x . Then the requested wronskian is:
W(y1,y2)=∣∣y1y1′y2y2′∣∣=y1y2′−y1′y2
y1=sin3x⇒y1′=3cos3xy2=cos3x⇒y2′=−3sin3x} Substituting the latter into the Wronskian, we obtain:
W(sin3x,cos3x)=∣∣sin3x3cos3xcos3x−3sin3x∣∣=−3sin23x+3cos23x=
=3(cos23x−sin23x)=3cos(2⋅3x)=3cos6x
Comments