f1=1-x
f2=1+x
f3=1-3x
W=[f1f2f3f1′f2′f3′f1′′f2′′f3′′]W=\begin{bmatrix} f_1 & f_2 & f_3 \\ f_1' & f_2' & f_3' \\ f_1'' & f_2'' & f_3'' \end{bmatrix}W=⎣⎡f1f1′f1′′f2f2′f2′′f3f3′f3′′⎦⎤
W=[1−x1+x1−3x−11−3000]W=\begin{bmatrix} 1-x & 1+x & 1-3x \\ -1 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}W=⎣⎡1−x−101+x101−3x−30⎦⎤
=(1-x)[1−300]\begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}[10−30] -(1+x)[−1−300]\begin{bmatrix} -1 & -3 \\ 0 & 0 \end{bmatrix}[−10−30] +(1-3x)[−1100]\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}[−1010]
=(1-x)(0-0)-(1-x)(0-0)+(1-3x)(0-0)
=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments