Question #239683
Verify that the given functions form the fundamental set of solution of the differential equation on the given indicated interval.

y" — 7y' + 10y = 24e^x
y = Cl1e^2x + C2e^5x + 6e^x, (-0, infinity)
1
Expert's answer
2021-09-28T01:21:23-0400

Solution;

The symbolic form of the equation is;

(D27D+10)y=24ex(D^2-7D+10)y=24e^x

The auxiliary equation is;

m27m+10=0m^2-7m+10=0

Rewrite as the following;

m22m5m+10=0m^2-2m-5m+10=0

m(m2)5(m2)=0m(m-2)-5(m-2)=0

(m2)(m5)=0(m-2)(m-5)=0

m=2 or 5

Hence;

C.F=ycC.F=y_c =C1e2x+C2e5xC_1e^{2x}+C_2e^{5x}

To find the particular solution;

Take,

y1=e2xy_1=e^{2x} ,y2=e5xy_2=e^{5x} and X=24exX=24e^x

Find the Workisian;

W=[y1y2y1y2]W=\begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} =[e2xe5x2e2x5e5x]\begin{bmatrix} e^{2x} & e^{5x} \\ 2e^{2x} & 5e^{5x} \end{bmatrix}

W=5e7x2e7x=3e7xW=5e^{7x}-2e^{7x}=3e^{7x}

P.I=yp=uy1+vy2P.I=y_p=uy_1+vy_2

Take ;

u=y2XW=e5x24ex3e7x=8exu=-\int\frac{y_2X}{W}=-\int\frac{e^{5x}24e^x}{3e^{7x}}=8e^{-x}

v=y1XW=e2x24ex3e7x=2e4xv=\int\frac{y_1X}{W}=\int\frac{e^{2x}24e^x}{3e^{7x}}=-2e^{-4x}

P.I=yp=8exe2x+2e4xe5xP.I=y_p=8e^{-x}e^{2x}+-2e^{-4x}e^{5x}

yp=8ex2ex=6exy_p=8e^x-2e^x=6e^x

The general solution is;

y=C.F+P.I=yc+ypy=C.F+P.I=y_c+y_p

y=C1e2x+C2e5x+6exy=C_1e^{2x}+C_2e^{5x}+6e^x

Hence the solution is verified.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS