Solution;
The symbolic form of the equation is;
(D2−7D+10)y=24ex
The auxiliary equation is;
m2−7m+10=0
Rewrite as the following;
m2−2m−5m+10=0
m(m−2)−5(m−2)=0
(m−2)(m−5)=0
m=2 or 5
Hence;
C.F=yc =C1e2x+C2e5x
To find the particular solution;
Take,
y1=e2x ,y2=e5x and X=24ex
Find the Workisian;
W=[y1y1′y2y2′] =[e2x2e2xe5x5e5x]
W=5e7x−2e7x=3e7x
P.I=yp=uy1+vy2
Take ;
u=−∫Wy2X=−∫3e7xe5x24ex=8e−x
v=∫Wy1X=∫3e7xe2x24ex=−2e−4x
P.I=yp=8e−xe2x+−2e−4xe5x
yp=8ex−2ex=6ex
The general solution is;
y=C.F+P.I=yc+yp
y=C1e2x+C2e5x+6ex
Hence the solution is verified.
Comments