Question #239627

Use the method of variation of parameters to solve the system

𝑋′ =[

3 −1 −1

−2 3 2

4 −1 −2

]𝑋+[

1

𝑒𝑡

𝑒𝑡]


1
Expert's answer
2021-09-21T11:46:21-0400

The given question is not at all clear. So, I am taking a example and solving that.


Question: Find a particular solution of:

y=[211101110]y+[et0et]\mathbf{y}^{\prime}=\left[\begin{array}{ccc} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{array}\right] \mathbf{y}+\left[\begin{array}{c} e^{t} \\ 0 \\ e^{-t} \end{array}\right]

Solution:

The characteristic polynomial of the coefficient matrix is

2λ111λ111λ=λ(λ1)2\left|\begin{array}{lll} 2-\lambda & -1 & -1 \\ 1 & -\lambda & -1 \\ 1 & -1 & -\lambda \end{array}\right|=-\lambda(\lambda-1)^{2}


y1=[111],y2=[etet0], and y3=[et0et]\mathbf{y}_{1}=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right],\quad \mathbf{y}_{2}=\left[\begin{array}{l} e^{t} \\ e^{t} \\ 0 \end{array}\right],\quad \text { and } \quad \mathbf{y}_{3}=\left[\begin{array}{l} e^{t} \\ 0 \\ e^{t} \end{array}\right]

are linearly independent solutions.


Y=[1etet1et010et]Y=\left[\begin{array}{lll} 1 & e^{t} & e^{t} \\ 1 & e^{t} & 0 \\ 1 & 0 & e^{t} \end{array}\right] is a fundamental matrix. We seek a particular solution


yp=Yu\mathbf{y}_{p}=Y \mathbf{u} where Yu=fY \mathbf{u}^{\prime}=\mathbf{f} ; that is:

[1etet1et0e0et][u1u2u3]=[et0et]\left[\begin{array}{lll} 1 & e^{t} & e^{t} \\ 1 & e^{t} & 0 \\ e & 0 & e^{t} \end{array}\right]\left[\begin{array}{l} u_{1}^{\prime} \\ u_{2}^{\prime} \\ u_{3}^{\prime} \end{array}\right]=\left[\begin{array}{l} e^{t} \\ 0 \\ e^{-t} \end{array}\right]

The determinant of YY  is the Wronskian:

1etet1et010et=e2t\left|\begin{array}{lll} 1 & e^{t} & e^{t} \\ 1 & e^{t} & 0 \\ 1 & 0 & e^{t} \end{array}\right|=-e^{2 t}

Thus, by Cramer's rule,



u1=1e2tetetet0et0et0et=e3tete2t=etetu2=1e2t1etet1001etet=1e2te2t=1e2t\begin{aligned} u_{1}^{\prime} &=-\frac{1}{e^{2 t}}\left|\begin{array}{lll} e^{t} & e^{t} & e^{t} \\ 0 & e^{t} & 0 \\ e^{-t} & 0 & e^{t} \end{array}\right| &=-\frac{e^{3 t}-e^{t}}{e^{2 t}}=e^{-t}-e^{t} \\ u_{2}^{\prime} &=-\frac{1}{e^{2 t}}\left|\begin{array}{ccc} 1 & e^{t} & e^{t} \\ 1 & 0 & 0 \\ 1 & e^{-t} & e^{t} \end{array}\right| &=-\frac{1-e^{2 t}}{e^{2 t}}=1-e^{-2 t} \end{aligned}

u3=1e2t1etet1et010et=e2te2t=1u_{3}^{\prime}=-\frac{1}{e^{2 t}}\left|\begin{array}{ccc} 1 & e^{t} & e^{t} \\ 1 & e^{t} & 0 \\ 1 & 0 & e^{-t} \end{array}\right|=\frac{e^{2 t}}{e^{2 t}} \quad=1

Therefore


u=[etet1e2t1]\mathbf{u}^{\prime}=\left[\begin{array}{l} e^{-t}-e^{t} \\ 1-e^{-2 t} \\ 1 \end{array}\right]

Integrating and taking the constants of integration to be zero yields

u=[etete2t2+tt]yp=Yu=[1etet1et010et][etete2t2+tt]=[et(2t1)et2et(t1)et2et(t1)et]\mathbf{u}=\left[\begin{array}{l} -e^{t}-e^{-t} \\ \frac{e^{-2 t}}{2}+t \\ t \end{array}\right] \\ \mathbf{y}_{p}=Y \mathbf{u}=\left[\begin{array}{lll} 1 & e^{t} & e^{t} \\ 1 & e^{t} & 0 \\ 1 & 0 & e^{t} \end{array}\right]\left[\begin{array}{l} -e^{t}-e^{-t} \\ \frac{e^{-2 t}}{2}+t \\ t \end{array}\right]=\left[\begin{array}{c} e^{t}(2 t-1)-\frac{e^{-t}}{2} \\ e^{t}(t-1)-\frac{e^{-t}}{2} \\ e^{t}(t-1)-e^{-t} \end{array}\right] is a particular solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS