The given question is not at all clear. So, I am taking a example and solving that.
Question: Find a particular solution of:
y′=⎣⎡211−10−1−1−10⎦⎤y+⎣⎡et0e−t⎦⎤
Solution:
The characteristic polynomial of the coefficient matrix is
∣∣2−λ11−1−λ−1−1−1−λ∣∣=−λ(λ−1)2
y1=⎣⎡111⎦⎤,y2=⎣⎡etet0⎦⎤, and y3=⎣⎡et0et⎦⎤
are linearly independent solutions.
Y=⎣⎡111etet0et0et⎦⎤ is a fundamental matrix. We seek a particular solution
yp=Yu where Yu′=f ; that is:
⎣⎡11eetet0et0et⎦⎤⎣⎡u1′u2′u3′⎦⎤=⎣⎡et0e−t⎦⎤
The determinant of Y is the Wronskian:
∣∣111etet0et0et∣∣=−e2t
Thus, by Cramer's rule,
u1′u2′=−e2t1∣∣et0e−tetet0et0et∣∣=−e2t1∣∣111et0e−tet0et∣∣=−e2te3t−et=e−t−et=−e2t1−e2t=1−e−2t
u3′=−e2t1∣∣111etet0et0e−t∣∣=e2te2t=1
Therefore
u′=⎣⎡e−t−et1−e−2t1⎦⎤
Integrating and taking the constants of integration to be zero yields
u=⎣⎡−et−e−t2e−2t+tt⎦⎤yp=Yu=⎣⎡111etet0et0et⎦⎤⎣⎡−et−e−t2e−2t+tt⎦⎤=⎣⎡et(2t−1)−2e−tet(t−1)−2e−tet(t−1)−e−t⎦⎤ is a particular solution.
Comments