The differential equation (DE) of y'' + (5^3 + sinx)^5 y' + y = cosx^3 is?
y′′+(53+sinx)5y′+y=cosx3y'' + (5^3 + sinx)^5 y' + y = cosx^3y′′+(53+sinx)5y′+y=cosx3
Replace y′y'y′ by DDD and y'' by D2D^2D2 :
D2+(53+sinx)5D+1=cosx3⇒D2+(53+sinx)5D+1−cosx3=0⇒D=−(53+sinx)5±((53+sinx)5)2−4(1)(1−cosx3)2D^2+ (5^3 + sinx)^5 D+ 1 = cosx^3\\ \Rightarrow D^2+ (5^3 + sinx)^5 D+ 1- cosx^3 =0\\ \Rightarrow D=\frac{-(5^3 + sinx)^5\pm \sqrt{((5^3 + sinx)^5)^2-4(1)(1-cosx^3)}}{2}D2+(53+sinx)5D+1=cosx3⇒D2+(53+sinx)5D+1−cosx3=0⇒D=2−(53+sinx)5±((53+sinx)5)2−4(1)(1−cosx3)
Here the given differential equation is of order 2 and non-homogeneous.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments