Question #239143

The differential equation (DE) of y'' + (5^3 + sinx)^5 y' + y = cosx^3 is?


1
Expert's answer
2021-09-20T16:21:43-0400

y+(53+sinx)5y+y=cosx3y'' + (5^3 + sinx)^5 y' + y = cosx^3

Replace yy' by DD and y'' by D2D^2 :

D2+(53+sinx)5D+1=cosx3D2+(53+sinx)5D+1cosx3=0D=(53+sinx)5±((53+sinx)5)24(1)(1cosx3)2D^2+ (5^3 + sinx)^5 D+ 1 = cosx^3\\ \Rightarrow D^2+ (5^3 + sinx)^5 D+ 1- cosx^3 =0\\ \Rightarrow D=\frac{-(5^3 + sinx)^5\pm \sqrt{((5^3 + sinx)^5)^2-4(1)(1-cosx^3)}}{2}


Here the given differential equation is of order 2 and non-homogeneous.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS