Question #239037

What is the value of y(π

2


)

y(π2) where y

′′

−2y

+y=xe

x

sinx

y″−2y′+y=xexsin⁡x ; y(0)=0

y(0)=0 and y

(0)=1

y′(0)=1 ?


1
Expert's answer
2021-09-27T15:41:13-0400

k22k+1=0k^2-2k+1=0

k1,2=1k_{1,2}=1

Y=c1ex+c2xexY=c_1e^x+c_2xe^x


y(x)=c1(x)ex+c2(x)xexy(x)=c_1(x)e^x+c_2(x)xe^x


y1(x)dc1(x)dx+y2(x)dc2(x)dx=0y_1(x)\frac{dc_1(x)}{dx}+y_2(x)\frac{dc_2(x)}{dx}=0


dy1(x)dxdc1(x)dx+dy2(x)dxdc2(x)dx=xexsinx\frac{dy_1(x)}{dx}\frac{dc_1(x)}{dx}+\frac{dy_2(x)}{dx}\frac{dc_2(x)}{dx}=xe^xsinx


exdc1(x)dx+xexdc2(x)dx=0e^x\frac{dc_1(x)}{dx}+xe^x\frac{dc_2(x)}{dx}=0


ddxexdc1(x)dx+ddx(xex)dc2(x)dx=xexsinx\frac{d}{dx}e^x\frac{dc_1(x)}{dx}+\frac{d}{dx}(xe^x)\frac{dc_2(x)}{dx}=xe^xsinx


ddxexdc1(x)dx+ddx(xex+ex)dc2(x)dx=xexsinx\frac{d}{dx}e^x\frac{dc_1(x)}{dx}+\frac{d}{dx}(xe^x+e^x)\frac{dc_2(x)}{dx}=xe^xsinx



ddxc1(x)=x2sinx\frac{d}{dx}c_1(x)=-x^2sinx


ddxc2(x)=xsinx\frac{d}{dx}c_2(x)=xsinx


c1(x)=c3+(x2sinx)dxc_1(x)=c_3+\int(-x^2sinx)dx


c2(x)=c4+xsinxdxc_2(x)=c_4+\int xsinxdx


c1(x)=c3+x2cosx2xsinx2cosxc_1(x)=c_3+x^2cosx-2xsinx-2cosx

c2(x)=c4xcosx+sinxc_2(x)=c_4-xcosx+sinx


y(x)=c3ex+c4xexxexsinx2excosxy(x)=c_3e^x+c_4xe^x-xe^xsinx-2e^xcosx


y(0)=c32=0    c3=2y(0)=c_3-2=0\implies c_3=2


y(x)=c3ex+c4xex+c4exex(sinx+xcosx)xexsinx2excosx+2exsinxy'(x)=c_3e^x+c_4xe^x+c_4e^x-e^x(sinx+xcosx)-xe^xsinx-2e^xcosx+2e^xsinx

y(0)=c3+c42=1    c4=1y'(0)=c_3+c_4-2=1\implies c_4=1


y(x)=2ex+xexxexsinx2excosxy(x)=2e^x+xe^x-xe^xsinx-2e^xcosx


y(π/2)=9.62y(\pi/2)=9.62


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS