Question #238671

((x^2) + 2)y′′ + xy' − 3y = 0


1
Expert's answer
2021-09-20T17:25:25-0400

(x2+2)y+xy3y=0Let t=sinh1(x2)    x=2sinh(t)dxdt=2cosh(t)    dtdx=1x2+2    d2tdx2=x(x2+2)32dydx=1x2+2dydtd2ydx2=1x2+2[d2ydt2x(x2+2)12dydt]Substituting into the original equation, we have d2ydt23y=0Get the auxiliary equationm23=0    m1=3,m2=3y=C1e3t+C2e3tBut t=sinh1(x2)    y(x)=C1e3sinh1(x2)+C2e3sinh1(x2)(x^2+2)y''+xy'-3y=0\\ \text{Let } t=\sinh^{-1} (\frac{x}{\sqrt{2}})\\ \implies x=\sqrt{2}\sinh{(t})\\ \frac{dx}{dt}=\sqrt{2}\cosh{(t})\\ \implies \frac{dt}{dx}=\frac{1}{\sqrt{x^2+2}}\\ \implies \frac{d^2t}{dx^2}=\frac{-x}{(x^2+2)^{\frac{3}{2}}}\\ \frac{dy}{dx}=\frac{1}{\sqrt{x^2+2}}\frac{dy}{dt}\\ \frac{d^2y}{dx^2}=\frac{1}{x^2+2}\left[\frac{d^2y}{dt^2}-\frac{x}{(x^2+2)^{\frac{1}{2}}}\frac{dy}{dt}\right]\\ \text{Substituting into the original equation, we have }\\ \frac{d^2y}{dt^2}-3y=0\\ \text{Get the auxiliary equation}\\ m^2-3=0\\ \implies m_1=\sqrt{3}, m_2=-\sqrt{3}\\ y=C_1e^{\sqrt{3}t}+C_2e^{-\sqrt{3}t}\\ \text{But } t= \sinh^{-1} (\frac{x}{\sqrt{2}})\\ \implies y(x)=C_1e^{\sqrt{3}\sinh^{-1} (\frac{x}{\sqrt{2}})}+C_2e^{-\sqrt{3}\sinh^{-1} (\frac{x}{\sqrt{2}})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS