( x 2 + 2 ) y ′ ′ + x y ′ − 3 y = 0 Let t = sinh − 1 ( x 2 ) ⟹ x = 2 sinh ( t ) d x d t = 2 cosh ( t ) ⟹ d t d x = 1 x 2 + 2 ⟹ d 2 t d x 2 = − x ( x 2 + 2 ) 3 2 d y d x = 1 x 2 + 2 d y d t d 2 y d x 2 = 1 x 2 + 2 [ d 2 y d t 2 − x ( x 2 + 2 ) 1 2 d y d t ] Substituting into the original equation, we have d 2 y d t 2 − 3 y = 0 Get the auxiliary equation m 2 − 3 = 0 ⟹ m 1 = 3 , m 2 = − 3 y = C 1 e 3 t + C 2 e − 3 t But t = sinh − 1 ( x 2 ) ⟹ y ( x ) = C 1 e 3 sinh − 1 ( x 2 ) + C 2 e − 3 sinh − 1 ( x 2 ) (x^2+2)y''+xy'-3y=0\\
\text{Let } t=\sinh^{-1} (\frac{x}{\sqrt{2}})\\
\implies x=\sqrt{2}\sinh{(t})\\
\frac{dx}{dt}=\sqrt{2}\cosh{(t})\\
\implies \frac{dt}{dx}=\frac{1}{\sqrt{x^2+2}}\\
\implies \frac{d^2t}{dx^2}=\frac{-x}{(x^2+2)^{\frac{3}{2}}}\\
\frac{dy}{dx}=\frac{1}{\sqrt{x^2+2}}\frac{dy}{dt}\\
\frac{d^2y}{dx^2}=\frac{1}{x^2+2}\left[\frac{d^2y}{dt^2}-\frac{x}{(x^2+2)^{\frac{1}{2}}}\frac{dy}{dt}\right]\\
\text{Substituting into the original equation, we have }\\
\frac{d^2y}{dt^2}-3y=0\\
\text{Get the auxiliary equation}\\
m^2-3=0\\
\implies m_1=\sqrt{3}, m_2=-\sqrt{3}\\
y=C_1e^{\sqrt{3}t}+C_2e^{-\sqrt{3}t}\\
\text{But } t= \sinh^{-1} (\frac{x}{\sqrt{2}})\\
\implies y(x)=C_1e^{\sqrt{3}\sinh^{-1} (\frac{x}{\sqrt{2}})}+C_2e^{-\sqrt{3}\sinh^{-1} (\frac{x}{\sqrt{2}})} ( x 2 + 2 ) y ′′ + x y ′ − 3 y = 0 Let t = sinh − 1 ( 2 x ) ⟹ x = 2 sinh ( t ) d t d x = 2 cosh ( t ) ⟹ d x d t = x 2 + 2 1 ⟹ d x 2 d 2 t = ( x 2 + 2 ) 2 3 − x d x d y = x 2 + 2 1 d t d y d x 2 d 2 y = x 2 + 2 1 [ d t 2 d 2 y − ( x 2 + 2 ) 2 1 x d t d y ] Substituting into the original equation, we have d t 2 d 2 y − 3 y = 0 Get the auxiliary equation m 2 − 3 = 0 ⟹ m 1 = 3 , m 2 = − 3 y = C 1 e 3 t + C 2 e − 3 t But t = sinh − 1 ( 2 x ) ⟹ y ( x ) = C 1 e 3 s i n h − 1 ( 2 x ) + C 2 e − 3 s i n h − 1 ( 2 x )
Comments