Question #238615

Solve the differential equation of the following homogeneous equation.


xydx + (x^2 + y^2)dy = 0


1
Expert's answer
2021-09-20T10:52:36-0400
y=xyx2+y2y'=-\dfrac{xy}{x^2+y^2}



Substitute y=uxy=ux

y=u+xuy'=u+xu'


u+xu=x2ux2+x2u2u+xu'=-\dfrac{x^2u}{x^2+x^2u^2}

xu=2u+u31+u2xu'=-\dfrac{2u+u^3}{1+u^2}

1+u22u+u3du=dxx\dfrac{1+u^2}{2u+u^3}du=-\dfrac{dx}{x}

Integrate


1+u22u+u3du=dxx\int \dfrac{1+u^2}{2u+u^3}du=-\int \dfrac{dx}{x}


1+u22u+u3=Au+Bu+C2+u2\dfrac{1+u^2}{2u+u^3}=\dfrac{A}{u}+\dfrac{Bu+C}{2+u^2}


=2A+Au2+Bu2+Cuu(2+u2)=\dfrac{2A+Au^2+Bu^2+Cu}{u(2+u^2)}

u2:A+B=1u^2: A+B=1

u1:C=0u^1:C=0

u0:2A=1u^0:2A=1


A=12,B=12A=\dfrac{1}{2}, B=-\dfrac{1}{2}


1+u22u+u3du=12duu12u2+u2du\int \dfrac{1+u^2}{2u+u^3}du=\dfrac{1}{2}\int \dfrac{du}{u}-\dfrac{1}{2}\int\dfrac{u}{2+u^2}du

=12ln(u)14ln(2+u2)+C1=\dfrac{1}{2}\ln(|u|)-\dfrac{1}{4}\ln(2+u^2)+C_1

12ln(u)14ln(2+u2)=lnx+lnC\dfrac{1}{2}\ln(|u|)-\dfrac{1}{4}\ln(2+u^2)=-\ln|x|+\ln C

xu2+u24=C\dfrac{x\sqrt{u}}{\sqrt[4]{2+u^2}}=C


xy2x2+y24=C\dfrac{x\sqrt{y}}{\sqrt[4]{2x^2+y^2}}=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS