Question #238505

Find the integral surface of 𝑥2𝑝 + 𝑦2𝑞 + 𝑧2 = 0 which passes through the curve x+y = xy, 𝑧= 1.


1
Expert's answer
2021-09-30T18:03:11-0400

x2p+y2q+z2=0

x2p+y2q=-z2

By lagrange equation;

dxx2=dyy2=dzz2\frac{dx}{x^{2}}=\frac{dy}{y^{2}}=\frac{dz}{-z^{2}}

Taking the 1st and 2nd terms,

dxx2=dyy2\frac{dx}{x^{2}}=\frac{dy}{y^{2}}

Integrate both sides,

dxx2=dyy2\int \frac{dx}{x^{2}}=\int \frac{dy}{y^{2}}

C1+1x=1yC_1+\frac{1}{-x}=-\frac{1}{y}

C1=1x1yC_1=\frac{1}{x}-\frac{1}{y} This is equation (i)

Taking the 2nd and 3rd terms,

dyy2=dzz2\frac{dy}{y^{2}}=\frac{dz}{-z^{2}}

Integrate both sides

dyy2=dzz2\int \frac{dy}{y^{2}}=\int \frac{dz}{-z^{2}}

1y+C2=1z-\frac{1}{y}+C_2=\frac{1}{z}

C2=1y+1zC_2=\frac{1}{y}+\frac{1}{z} This is equation (ii)

The equation of the curve given is x+y=xy and z=1

We let x=t

Therefore from the equation of the curve;

x=xy-y

Rearrange; xy-y=x

y(x-1)=x

y=xx1    y=tt1y=\frac{x}{x-1}\implies y=\frac{t}{t-1}

z=1

Put the above values of x,y and z in equations (i) and (ii) and remove t from the obtained relation

C1=1tt1tC_1=\frac{1}{t}-\frac{t-1}{t}

C1=1t1+1tC_1=\frac{1}{t}-1+\frac{1}{t}

C1=1t+1t1C_1=\frac{1}{t}+\frac{1}{t}-1 This is equation (iii)

C2=11t+1C_2=1-\frac{1}{t}+1

C2=21tC_2=2-\frac{1}{t}

1t=2C2\frac{1}{t}=2-C_2 Replace this in equation (iii)

C1=2C2+2C21C_1=2-C_2+2-C_2-1

C1=32C2C_1=3-2C_2 This is equation (iv)

Now replace the values of C1 and C2 in (iv) to get the required surface

1x1y=32y2z\frac{1}{x}-\frac{1}{y}=3-\frac{2}{y}-\frac{2}{z}

yxxy=3yz2z2yyz\frac{y-x}{xy}=\frac{3yz-2z-2y}{yz}

zyxz=3xyz2xz2xyzy-xz=3xyz-2xz-2xy

The Integral surface is;

zy+xz+2xy=3xyzzy+xz+2xy=3xyz


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS