Question #238375
X^2d^2y/dx^2-3xdy/dx+4y=x+x^2logx
1
Expert's answer
2021-09-20T11:35:33-0400

Let us solve the differential equation x2d2ydx23xdydx+4y=x+x2lnx.x^2\frac{d^2y}{dx^2}-3x\frac{dy}{dx}+4y=x+x^2\ln x. For this let us use the transformation x=et.x=e^t. Then yx=ytet, yx2=(yt2yt)e2t.y'_x=y'_te^{-t},\ y''_{x^2}=(y''_{t^2}-y'_t)e^{-2t}.


Then we get the following equation

e2t(yt2yt)e2t3etytet+4y=et+te2t,e^{2t}(y''_{t^2}-y'_t)e^{-2t}-3e^ty'_te^{-t}+4y=e^t+te^{2t}, which is equivalent to yt24yt+4y=et+te2t.y''_{t^2}-4y'_t+4y=e^t+te^{2t}.


The characteristic equation k24k+4=0k^2-4k+4=0 of the equation yt24yt+4y=0y''_{t^2}-4y'_t+4y=0 is equivalent to (k2)2=0,(k-2)^2=0, and hence has the solutions k1=k2=2.k_1=k_2=2.


It follows that the general solution of the equation yt24yt+4y=et+te2ty''_{t^2}-4y'_t+4y=e^t+te^{2t} is y(t)=(C1+C2t)e2t+yp,y(t)=(C_1+C_2t)e^{2t}+y_p, where yp=aet+t2(bt+c)e2t.y_p=ae^t+t^2(bt+c)e^{2t}.


Then

yp(t)=aet+(3bt2+2ct)e2t+(bt3+ct2)2e2t=aet+(2bt3+(3b+2c)t2+2ct)e2t,y'_p(t)=ae^t+(3bt^2+2ct)e^{2t}+(bt^3+ct^2)2e^{2t}= ae^t+(2bt^3+(3b+2c)t^2+2ct)e^{2t},

yp(t)=aet+(6bt2+2(3b+2c)t+2c)e2t+2(2bt3+(3b+2c)t2+2ct)e2t=aet+(4bt3+(12b+4c)t2+(6b+6c)t+2c)e2t.y''_p(t)=ae^t+(6bt^2+2(3b+2c)t+2c)e^{2t}+2(2bt^3+(3b+2c)t^2+2ct)e^{2t}=\\ ae^t+(4bt^3+(12b+4c)t^2+(6b+6c)t+2c)e^{2t}.


Then we get aet+(4bt3+(12b+4c)t2+(6b+6c)t+2c)e2t4(aet+(2bt3+(3b+2c)t2+2ct)e2t)+4(aet+(bt3+ct2)e2t)=et+te2t.ae^t+(4bt^3+(12b+4c)t^2+(6b+6c)t+2c)e^{2t}-4(ae^t+(2bt^3+(3b+2c)t^2+2ct)e^{2t})+4(ae^t+(bt^3+ct^2)e^{2t})=e^t+te^{2t}.


It follows that

aet+((6b2c)t+2c)e2t=et+te2t.ae^t+((6b-2c)t+2c)e^{2t}=e^t+te^{2t}.


Then we get a=1, 6b2c=1, 2c=0,a=1,\ 6b-2c=1,\ 2c=0, and hence a=1, b=16, c=0.a=1,\ b=\frac{1}6,\ c=0.


Therefore, the solution of yt24yt+4y=et+te2ty''_{t^2}-4y'_t+4y=e^t+te^{2t} is

y(t)=(C1+C2t)e2t+et+16t3e2t.y(t)=(C_1+C_2t)e^{2t}+e^t+\frac{1}6t^3e^{2t}.


Consequently, the solution of x2d2ydx23xdydx+4y=x+x2lnxx^2\frac{d^2y}{dx^2}-3x\frac{dy}{dx}+4y=x+x^2\ln x is


y(x)=(C1+C2lnx)x2+x+16x2ln3x.y(x)=(C_1+C_2\ln x)x^2+x+\frac{1}6x^2\ln^3x.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS