Question #238374
d^2y/dx^2-6dy/dx+9y=1+x+x^2
1
Expert's answer
2021-09-19T18:07:35-0400

d2ydx26dydx+9y=1+x+x2\frac{d^{2}y}{dx^2}-6\frac{dy}{dx}+9y=1+x+x^{2}

P(s)=s2-6s+9

=(s-3)2

Since we have two identical roots,the homogeneous solution will have the form ;

yh=C1e3x + C2xe3x

yp=Ax2+Bx+C

y'p=2Ax+B

y''p=2A

9Ax2+(9B-12A)x+(2A-6B+9C)=x2+x+1

9A=1     \implies A=19\frac{1}{9}

9B-12A=1     B=727\implies B=\frac{7}{27}

2A-6B+9C=1    C=727\implies C=\frac{7}{27}

So yp=19x2+727x+727\frac{1}{9}x^{2}+\frac{7}{27}x+\frac{7}{27}

\therefore The general solution is:

y=C1e3x+C2xe3x+19x2+727x+727y=C_1e^{3x}+C_2xe^{3x}+\frac{1}{9}x^{2}+\frac{7}{27}x+\frac{7}{27}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS