Question #238079
A String is stretched and fastened to two points l apart. Motion is started by
displacing the string in the form
1
Expert's answer
2021-09-20T01:47:25-0400

The displacement y(x,t) of the point of the string at a distance x from the left end 0 at time t is given by the equation2yt2=a22yx2Since the ends of the string x=0 and x=l are fixed, they do not undergo any displacement at any time.Therefore,y(0,t)=0 for t0 and y(l,t)=0 for t0Since the string is released from rest initially, that is, at t=0,the initial velocity of every point of the string in the ydirection is zero.Hence, yt(x,0)=0,for 0xl2yt2=a22yx2Solving the PDE by Separation of Variables,The \ displacement \ y(x, t) \ of \ the \ point \ of \ the \ string \ at \ a \\\ distance \ x \ from \ the \ left \ end \ 0 \ at \ time \ t \ is \ given\\ \ by \ the \ equation \frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}} \\ Since \ the \ ends \ of \ the \ string \\ \ x=0 \ and \ x=l \ are \ fixed, \ they \ do \ not \ undergo\\ \ any \ displacement \ at \ any \ time.\\ Therefore, y(0, t)=0 \ for \ t \geq 0 \ and \ y(l, t)=0 \ for \ t \geq 0 \\ Since \ the \ string \ is \ released \ from \ rest \ initially, \\\ that \ is, \ at \ t= 0 , the \ initial \ velocity \ of \ every \ point \ of \ the\\ \ string \ in \ the \ y - direction \ is \ zero.\\ Hence, \ \frac{\partial y}{\partial t}(x, 0)=0 , for \ 0 \leq x \leq l\\ \frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}\\ Solving \ the \ PDE \ by \ Separation \ of \ Variables,\\


Lety=X(x)T(t)yx=X(x)T(t)2yx2=X(x)T(t)yt=X(x)T(t)2yt2=X(x)T(t)X(x)T(t)=a2X(x)T(t)X(x)X(x)=T(t)a2T(t)=K2X(x)X(x)=K2X(x)K2X(x)=0SolutionofX(x)isX(x)=C1cos(Kx)+C2sin(Kx)T(t)a2T(t)=K2T(t)a2K2T(t)=0Let y=X(x) T(t) \frac{\partial y}{\partial x}=X^{\prime}(x) T(t) \\ \frac{\partial^{2} y}{\partial x^{2}}=X^{\prime \prime}(x) T(t) \\ \frac{\partial y}{\partial t}=X(x) T^{\prime}(t) \\ \frac{\partial^{2} y}{\partial t^{2}}=X(x) T^{\prime \prime}(t) \\ X(x) T^{\prime \prime}(t)=a^{2} X^{\prime \prime}(x) T(t) \\ \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{a^{2} T(t)}=K^{2} \\ \frac{X^{\prime \prime}(x)}{X(x)}=K^{2} \\ X^{\prime \prime}(x)-K^{2} X(x)=0\\ Solution \,of \,X(x) \, is\, X(x)=C_{1} \cos (K x)+C_{2} \sin (K x) \\ \frac{T^{\prime \prime}(t)}{a^{2} T(t)}=K^{2} \\ T^{\prime \prime}(t)-a^{2} K^{2} T(t)=0


T(t)=C3cos(aKt)+C4sin(aKt)Thus, y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))By initial condition, yt(x,0)=0yt=(C1cos(Kx)+C2sin(Kx))(C3aKsin(aKt)+C4aKcos(aKt))yt(x,0)=C4aK(C1cos(Kx)+C2sin(Kx))=0C4=0By the initial condition y(0,t)=0y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))=0y(0,t)=C1(C3cos(aKt)+C4sin(aKt))=0C1=0y(x,t)=C2sin(Kx)C3cos(aKt)By the initial condition y(l,t)=0y(l,t)=C2sin(Kl)C3cos(aKt)=0sin(Kl)=0sin(Kl)=sin(nπ) for n1T(t)=C_{3} \cos (a K t)+C_{4} \sin (a K t)\\ Thus, \ y(x, t)=\left(C_{1} \cos (K x)+C_{2} \sin (K x)\right)\left(C_{3} \cos (a K t)+C_{4} \sin (a K t)\right) \\ By \ initial \ condition, \ \frac{\partial y}{\partial t}(x, 0)=0\\ \frac{\partial y}{\partial t}=\left(C_{1} \cos (K x)+C_{2} \sin (K x)\right)\left(-C_{3} a K \sin (a K t)+C_{4} a K \cos (a K t)\right) \\ \frac{\partial y}{\partial t}(x, 0)=C_{4} a K\left(C_{1} \cos (K x)+C_{2} \sin (K x)\right)=0 \\ \Longrightarrow C_{4}=0\\ By \ the \ initial \ condition \ y(0, t)=0 \\ y(x, t)=\left(C_{1} \cos (K x)+C_{2} \sin (K x)\right)\left(C_{3} \cos (a K t)+C_{4} \sin (a K t)\right)=0 \\ y(0, t)=C_{1}\left(C_{3} \cos (a K t)+C_{4} \sin (a K t)\right)=0 \\ \Longrightarrow C_{1}=0 \\ \therefore y(x, t)=C_{2} \sin (K x) C_{3} \cos (a K t)\\ By \ the \ initial \ condition \ y(l, t)=0 \\ y(l, t)=C_{2} \sin (K l) C_{3} \cos (a K t)=0 \\ \Longrightarrow \sin (K l)=0 \\ \sin (K l)=\sin (n \pi) \quad \text { for } n \geq 1\\


K=nπly(x,t)=C2C3sin(anπxl)cos(anπtl)=λsin(anπxl)cos(anπtl)The general solution is thus,y(x,t)=n=1λnsin(anπxl)cos(anπtl)Where, λn can be related to the FourierCoefficients by incorporating the initial conditions.y(x,0)=n=1λnsin(anπxl)cos(anπ×0l)=n=1λnsin(anπxl)By Fouriers Halfrange sine series, we derive λn=2al01ay(x,0)sin(anπxl)dxK=\frac{n \pi}{l} \\ \therefore y(x, t)=C_{2} C_{3} \sin \left(\frac{a n \pi x}{l}\right) \cos \left(\frac{a n \pi t}{l}\right)=\lambda \sin \left(\frac{a n \pi x}{l}\right) \cos \left(\frac{a n \pi t}{l}\right)\\ The \ general \ solution \ is \ thus,\\ y(x, t)=\sum_{n=1}^{\infty} \lambda_{n} \sin \left(\frac{a n \pi x}{l}\right) \cos \left(\frac{a n \pi t}{l}\right) Where, \ \lambda_{n} \ can \ be \ related \ to \ the \ Fourier \\ Coefficients \ by \ incorporating \ the \ initial \ conditions.\\ y(x, 0)=\sum_{n=1}^{\infty} \lambda_{n} \sin \left(\frac{a n \pi x}{l}\right) \cos \left(\frac{a n \pi \times 0}{l}\right)=\sum_{n=1}^{\infty} \lambda_{n} \sin \left(\frac{a n \pi x}{l}\right) \\ By \ Fourier's \ Half-range \ sine \ series, \ we \ derive \ \\ \lambda_{n}=\frac{2 a}{l} \int_{0}^{\frac{1}{a}} y(x, 0) \sin \left(\frac{a n \pi x}{l}\right) \mathrm{d} x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS