The displacement y(x,t) of the point of the string at a distance x from the left end 0 at time t is given by the equation∂t2∂2y=a2∂x2∂2ySince the ends of the string x=0 and x=l are fixed, they do not undergo any displacement at any time.Therefore,y(0,t)=0 for t≥0 and y(l,t)=0 for t≥0Since the string is released from rest initially, that is, at t=0,the initial velocity of every point of the string in the y−direction is zero.Hence, ∂t∂y(x,0)=0,for 0≤x≤l∂t2∂2y=a2∂x2∂2ySolving the PDE by Separation of Variables,
Lety=X(x)T(t)∂x∂y=X′(x)T(t)∂x2∂2y=X′′(x)T(t)∂t∂y=X(x)T′(t)∂t2∂2y=X(x)T′′(t)X(x)T′′(t)=a2X′′(x)T(t)X(x)X′′(x)=a2T(t)T′′(t)=K2X(x)X′′(x)=K2X′′(x)−K2X(x)=0SolutionofX(x)isX(x)=C1cos(Kx)+C2sin(Kx)a2T(t)T′′(t)=K2T′′(t)−a2K2T(t)=0
T(t)=C3cos(aKt)+C4sin(aKt)Thus, y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))By initial condition, ∂t∂y(x,0)=0∂t∂y=(C1cos(Kx)+C2sin(Kx))(−C3aKsin(aKt)+C4aKcos(aKt))∂t∂y(x,0)=C4aK(C1cos(Kx)+C2sin(Kx))=0⟹C4=0By the initial condition y(0,t)=0y(x,t)=(C1cos(Kx)+C2sin(Kx))(C3cos(aKt)+C4sin(aKt))=0y(0,t)=C1(C3cos(aKt)+C4sin(aKt))=0⟹C1=0∴y(x,t)=C2sin(Kx)C3cos(aKt)By the initial condition y(l,t)=0y(l,t)=C2sin(Kl)C3cos(aKt)=0⟹sin(Kl)=0sin(Kl)=sin(nπ) for n≥1
K=lnπ∴y(x,t)=C2C3sin(lanπx)cos(lanπt)=λsin(lanπx)cos(lanπt)The general solution is thus,y(x,t)=∑n=1∞λnsin(lanπx)cos(lanπt)Where, λn can be related to the FourierCoefficients by incorporating the initial conditions.y(x,0)=∑n=1∞λnsin(lanπx)cos(lanπ×0)=∑n=1∞λnsin(lanπx)By Fourier′s Half−range sine series, we derive λn=l2a∫0a1y(x,0)sin(lanπx)dx
Comments