Question #237939

Solve the differential equation by separation of variables with step-by-step procedures.

(x+2)dx = (x+3) siny cosydy


1
Expert's answer
2021-09-17T00:06:40-0400
(x+2)dx=(x+3)sinycosydy(x+2)dx = (x+3) \sin y \cos ydy

sinycosydy=x+2x+3dx\sin y \cos ydy=\dfrac{x+2}{x+3}dx

Integrate


sinycosydy=x+2x+3dx\int \sin y \cos ydy=\int\dfrac{x+2}{x+3}dx

sinycosydy=12sin(2y)dy\int \sin y \cos ydy=\dfrac{1}{2}\int \sin (2y)dy

=14cos(2y)+C1=-\dfrac{1}{4}\cos(2y)+C_1



x+2x+3dx=x+3x+3dx1x+3dx\int\dfrac{x+2}{x+3}dx=\int\dfrac{x+3}{x+3}dx-\int\dfrac{1}{x+3}dx

=dx1x+3=xln(x+3)+C2=\int dx-\int\dfrac{1}{x+3}=x-\ln(|x+3|)+C_2


14cos(2y)+C1=xln(x+3)+C2-\dfrac{1}{4}\cos(2y)+C_1=x-\ln(|x+3|)+C_2

The solution of the equation in implicit form is


xln(x+3)+14cos(2y)=Cx-\ln(|x+3|)+\dfrac{1}{4}\cos(2y)=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS