(D3-3DD'-2D'3)z=Cos(x+2y)
∵ D=m and D'=1
The auxiliary equation is;
m3-3m-2=0
(m+1)(m+1)(m-2)=0
m=-1,-1,2
Therefore C.F=f1(y-x)+xf2(y-x)+f3(y+2x)
Now,
P.I=D3−3DD′2−2D′31Cos(x+2y)
But D2=-1,D'2=-22=-4
P.I=(−1)D−3D(−4)−2(−4)D′1Cos(x+2y)
=−D+12D+8D′1Cos(x+2y)
= 11D+8D′1Cos(x+2y)
=11D2+2DD′DCos(x+2y)
=11(−1)+8(−2)DCos(x+2y) ∵D2=−12 and D−D′=−1∗2=−2
P.I=−11−16D∫Cos(x+2y)
=27−1[−Sin(x+2y)]
=271Sin(x+2y)
The general solution becomes;
y=C.F+P.I
=f1(y-x)+xf2(y-x)+f3(y+2x)+271Sin(x+2y)
Comments