Question #237598

(D

3 − 3DD

′2 − 2D

′3

)z = cos(x + 2y)


1
Expert's answer
2021-09-16T08:05:28-0400

(D3-3DD'-2D'3)z=Cos(x+2y)

\because D=m and D'=1

The auxiliary equation is;

m3-3m-2=0

(m+1)(m+1)(m-2)=0

m=-1,-1,2

Therefore C.F=f1(y-x)+xf2(y-x)+f3(y+2x)

Now,

P.I=1D33DD22D3Cos(x+2y)\frac{1}{D^{3}-3DD'^{2}-2D'^{3}}Cos(x+2y)

But D2=-1,D'2=-22=-4

P.I=1(1)D3D(4)2(4)DCos(x+2y)\frac{1}{(-1)D-3D(-4)-2(-4)D'}Cos(x+2y)

=1D+12D+8DCos(x+2y)\frac{1}{-D+12D+8D'}Cos(x+2y)

= 111D+8DCos(x+2y)\frac{1}{11D+8D'}Cos(x+2y)

=D11D2+2DDCos(x+2y)\frac{D}{11D^{2}+2DD'}Cos(x+2y)

=D11(1)+8(2)Cos(x+2y) D2=12 and DD=12=2\frac{D}{11(-1)+8(-2)}Cos(x+2y)\ \because D^{2}=-1^{2}\ and\ D-D'=-1*2=-2

P.I=D1116Cos(x+2y)\frac{D}{-11-16}\int Cos(x+2y)

=127[Sin(x+2y)]\frac{-1}{27}[-Sin(x+2y)]

=127Sin(x+2y)\frac{1}{27}Sin(x+2y)

The general solution becomes;

y=C.F+P.I

=f1(y-x)+xf2(y-x)+f3(y+2x)+127Sin(x+2y)\frac{1}{27}Sin(x+2y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS