Question #237546

d^2y/dx^2+dy/dx-y=6


1
Expert's answer
2021-09-16T03:25:01-0400

z=y+6,dydx=dzdx,d2zdx2=d2ydx2z=y+6, \dfrac{dy}{dx}=\dfrac{dz}{dx}, \dfrac{d^2z}{dx^2}=\dfrac{d^2y}{dx^2}


The homogeneous differential equation


d2zdx2+dzdxz=0\dfrac{d^2z}{dx^2}+\dfrac{dz}{dx}-z=0

The corresponding (auxiliary) equation


r2+r1=0r^2+r-1=0

D=(1)24(1)(1)=5D=(1)^2-4(1)(-1)=5

r=1±52(1)r=\dfrac{-1\pm\sqrt{5}}{2(1)}

The general solution of the homogeneous differential equation is


z=C1e(152)x+C2e(1+52)xz=C_1e^{({-1-\sqrt{5} \over 2})x}+C_2e^{({-1+\sqrt{5} \over 2})x}




y=C1e(152)x+C2e(1+52)x6y=C_1e^{({-1-\sqrt{5} \over 2})x}+C_2e^{({-1+\sqrt{5} \over 2})x}-6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS