z = y + 6 , d y d x = d z d x , d 2 z d x 2 = d 2 y d x 2 z=y+6, \dfrac{dy}{dx}=\dfrac{dz}{dx}, \dfrac{d^2z}{dx^2}=\dfrac{d^2y}{dx^2} z = y + 6 , d x d y = d x d z , d x 2 d 2 z = d x 2 d 2 y
The homogeneous differential equation
d 2 z d x 2 + d z d x − z = 0 \dfrac{d^2z}{dx^2}+\dfrac{dz}{dx}-z=0 d x 2 d 2 z + d x d z − z = 0 The corresponding (auxiliary) equation
r 2 + r − 1 = 0 r^2+r-1=0 r 2 + r − 1 = 0
D = ( 1 ) 2 − 4 ( 1 ) ( − 1 ) = 5 D=(1)^2-4(1)(-1)=5 D = ( 1 ) 2 − 4 ( 1 ) ( − 1 ) = 5
r = − 1 ± 5 2 ( 1 ) r=\dfrac{-1\pm\sqrt{5}}{2(1)} r = 2 ( 1 ) − 1 ± 5 The general solution of the homogeneous differential equation is
z = C 1 e ( − 1 − 5 2 ) x + C 2 e ( − 1 + 5 2 ) x z=C_1e^{({-1-\sqrt{5} \over 2})x}+C_2e^{({-1+\sqrt{5} \over 2})x} z = C 1 e ( 2 − 1 − 5 ) x + C 2 e ( 2 − 1 + 5 ) x
y = C 1 e ( − 1 − 5 2 ) x + C 2 e ( − 1 + 5 2 ) x − 6 y=C_1e^{({-1-\sqrt{5} \over 2})x}+C_2e^{({-1+\sqrt{5} \over 2})x}-6 y = C 1 e ( 2 − 1 − 5 ) x + C 2 e ( 2 − 1 + 5 ) x − 6
Comments