Question #237499
Solve the differential equation of the following homogeneous equation.

(x^2 - xy + y^2)dx - xydy = 0
1
Expert's answer
2021-09-17T00:10:52-0400

(x2xy+y2)dxxydy=0Divide by x2(1yx+y2x2)dxyxdy=0Let yx=vy=vx(1v+v2)dxvdy=0dy=(vdx+xdv)(1v+v2)dxv(vdx+xdv)=0(1v+v2v2)dxvxdv=0(1v)dxvxdv=0(1v)dx=vxdvDivide both sides by (1v)xdxx=v(1v)dvIntegrate both sides ,we get:v(1v)=1(1v)1dxx=dv(1v)dvSubstitute v=yxln(x)+C1=ln(1v)vln(x)+C1=ln[(xy)x]yxln[(xy)x]+yx=ln(x)+C(x^2 -xy +y^2)dx -xydy =0 \\ Divide \ by \ x^2 \\ (1-\frac{y}{x} +\frac{y^2}{x^2}) dx - \frac{y}{x} dy = 0 \\ Let \ \frac{y}{x} = v \\ y=vx \\ (1-v+v^2) dx - v dy = 0 \\ dy = (vdx+xdv) \\ (1-v+v^2) dx - v (v dx+x dv) = 0 \\ (1-v+v^2-v^2) dx - vx dv = 0 \\ (1-v) dx - vx dv = 0 \\ (1-v) dx = vx dv \\ Divide \ both \ sides \ by \ (1-v) x\\ \frac{dx}{x} = \frac{v}{(1-v)} dv \\ Integrate \ both \ sides\ , we \ get: \\ \frac{v}{(1-v)} = \frac{1}{(1-v)} - 1 \\ ∫ \frac{dx}{x} = ∫ \frac{dv}{(1-v)} - ∫ dv \\ Substitute \ v=\frac{y}{x}\\ ln(x) + C_1 = -ln(1-v) - v \\ ln(x) + C_1 = - ln[\frac{(x-y)}{x}] - \frac{y}{x}\\ ln[\frac{(x-y)}{x}] + \frac{y}{x} = - ln(x) + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS