(x2−xy+y2)dx−xydy=0Divide by x2(1−xy+x2y2)dx−xydy=0Let xy=vy=vx(1−v+v2)dx−vdy=0dy=(vdx+xdv)(1−v+v2)dx−v(vdx+xdv)=0(1−v+v2−v2)dx−vxdv=0(1−v)dx−vxdv=0(1−v)dx=vxdvDivide both sides by (1−v)xxdx=(1−v)vdvIntegrate both sides ,we get:(1−v)v=(1−v)1−1∫xdx=∫(1−v)dv−∫dvSubstitute v=xyln(x)+C1=−ln(1−v)−vln(x)+C1=−ln[x(x−y)]−xyln[x(x−y)]+xy=−ln(x)+C
Comments