(x+2)dx=(x+3)siny.cosydy(x + 2) dx = (x + 3) \sin y. \cos y dy(x+2)dx=(x+3)siny.cosydy
⇒x+2x+3dx=sin2y2dy\Rightarrow \frac{x+2}{x+3} dx=\frac{\sin2y}{2}dy⇒x+3x+2dx=2sin2ydy
Integrating both sides, we get
∫x+2x+3dx=∫sin2y2dy⇒∫x+3−1x+3dx=12∫sin2ydy⇒∫dx−∫1x+3dx=−12.cos2y2+c⇒x−ln∣x+3∣=−cos2y4+c\int\frac{x+2}{x+3} dx=\int\frac{\sin2y}{2}dy \\\Rightarrow \int\frac{x+3-1}{x+3} dx=\frac{1}{2}\int\sin2ydy \\\Rightarrow \int dx-\int \frac{1}{x+3}dx=-\frac{1}{2}.\frac{\cos 2y}{2}+c \\\Rightarrow x-ln|x+3|=-\frac{\cos 2y}{4}+c∫x+3x+2dx=∫2sin2ydy⇒∫x+3x+3−1dx=21∫sin2ydy⇒∫dx−∫x+31dx=−21.2cos2y+c⇒x−ln∣x+3∣=−4cos2y+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments