Question #237496
Solve the differential equation by separation of variables.

(x + 2) dx = (x + 3) sin y cos y dy
1
Expert's answer
2021-09-15T02:57:12-0400

(x+2)dx=(x+3)siny.cosydy(x + 2) dx = (x + 3) \sin y. \cos y dy

x+2x+3dx=sin2y2dy\Rightarrow \frac{x+2}{x+3} dx=\frac{\sin2y}{2}dy

Integrating both sides, we get

x+2x+3dx=sin2y2dyx+31x+3dx=12sin2ydydx1x+3dx=12.cos2y2+cxlnx+3=cos2y4+c\int\frac{x+2}{x+3} dx=\int\frac{\sin2y}{2}dy \\\Rightarrow \int\frac{x+3-1}{x+3} dx=\frac{1}{2}\int\sin2ydy \\\Rightarrow \int dx-\int \frac{1}{x+3}dx=-\frac{1}{2}.\frac{\cos 2y}{2}+c \\\Rightarrow x-ln|x+3|=-\frac{\cos 2y}{4}+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS