Question #237493
Solve the differential equation by separation of variables.

(x^3 + 2)y = x(y^4 + 3)y’
1
Expert's answer
2021-09-15T02:57:10-0400

(x3+2)y=x(y4+3)y(x3+2)y=x(y4+3)dydxx3+2xdx=y4+3ydy(y3+3y)dy=(x2+2x)dxy44+3lny=x33+2lnx+C({x^3} + 2)y = x\left( {{y^4} + 3} \right)y' \Rightarrow ({x^3} + 2)y = x\left( {{y^4} + 3} \right)\frac{{dy}}{{dx}} \Rightarrow \frac{{{x^3} + 2}}{x}dx = \frac{{{y^4} + 3}}{y}dy \Rightarrow \left( {{y^3} + \frac{3}{y}} \right)dy = \left( {{x^2} + \frac{2}{x}} \right)dx \Rightarrow \frac{{{y^4}}}{4} + 3\ln |y| = \frac{{{x^3}}}{3} + 2\ln |x| + C

Answer: y44+3lnyx332lnx=C\frac{{{y^4}}}{4} + 3\ln |y| - \frac{{{x^3}}}{3} - 2\ln |x| = C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS