(x3+2)y=x(y4+3)y′⇒(x3+2)y=x(y4+3)dydx⇒x3+2xdx=y4+3ydy⇒(y3+3y)dy=(x2+2x)dx⇒y44+3ln∣y∣=x33+2ln∣x∣+C({x^3} + 2)y = x\left( {{y^4} + 3} \right)y' \Rightarrow ({x^3} + 2)y = x\left( {{y^4} + 3} \right)\frac{{dy}}{{dx}} \Rightarrow \frac{{{x^3} + 2}}{x}dx = \frac{{{y^4} + 3}}{y}dy \Rightarrow \left( {{y^3} + \frac{3}{y}} \right)dy = \left( {{x^2} + \frac{2}{x}} \right)dx \Rightarrow \frac{{{y^4}}}{4} + 3\ln |y| = \frac{{{x^3}}}{3} + 2\ln |x| + C(x3+2)y=x(y4+3)y′⇒(x3+2)y=x(y4+3)dxdy⇒xx3+2dx=yy4+3dy⇒(y3+y3)dy=(x2+x2)dx⇒4y4+3ln∣y∣=3x3+2ln∣x∣+C
Answer: y44+3ln∣y∣−x33−2ln∣x∣=C\frac{{{y^4}}}{4} + 3\ln |y| - \frac{{{x^3}}}{3} - 2\ln |x| = C4y4+3ln∣y∣−3x3−2ln∣x∣=C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments