Question #237423

Eliminate the arbitrary constants.


y = x + Aex + Be-2x

1
Expert's answer
2021-09-15T02:57:17-0400

Given


y=x+Aex+Be2x(i)y=x+Ae^x + Be^{-2x} \quad \cdots (i)


From eqn (i) above,


yx=Aex+Be2x(ii)y-x=Ae^x + Be^{-2x} \quad \cdots (ii)

Since we have two arbitrary constants, we'll differentiate eqn (i) twice.


y=1+Aex2Be2x(iii)y=Aex+4Be2x(iv)y'=1+Ae^x -2Be^{-2x} \quad \cdots (iii)\\ y''=Ae^x +4Be^{-2x} \quad \cdots (iv)

Adding eqn (iii) and eqn (iv), we have:


y+y=1+2Aex+2Be2xy+y=1+2(Aex+Be2x)(v)y''+y'=1+2Ae^x +2Be^{-2x}\\ y''+y'=1+2(Ae^x +Be^{-2x}) \quad \cdots (v)

Put (ii) in (v), we get


y+y=1+2(yx)y''+y'=1+2(y-x)\\

Re-write


y+y2y=12xy''+y'-2y=1-2x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS