The homogeneous differential equation
y′′+4y′−y=0 The corresponding (auxiliary) equation
r2+4r−1=0
D=(4)2−4(1)(−1)=20
r=2(1)−4±20=−2±5 The general solution of the homogeneous differential equation is
y=C1e(−2−5)x+C2e(−2+5)x
Find the particular solution of the non-homogeneous differential equation
yp=A+Be2x
yp′=2Be2x
yp′′=4Be2x Substitute
4Be2x+4(2Be2x)−(A+Be2x)=14+6e2x
−A+11Be2x=14+6e2x
A=−14,B=116 Then
yp=−14+116e2x The general solution of the given non-homogeneous differential equation is
y=yh+yp
y=C1e(−2−5)x+C2e(−2+5)x−14+116e2x
Comments