The homogeneous differential equation
y ′ ′ + 4 y ′ − y = 0 y''+4y'-y=0 y ′′ + 4 y ′ − y = 0 The corresponding (auxiliary) equation
r 2 + 4 r − 1 = 0 r^2+4r-1=0 r 2 + 4 r − 1 = 0
D = ( 4 ) 2 − 4 ( 1 ) ( − 1 ) = 20 D=(4)^2-4(1)(-1)=20 D = ( 4 ) 2 − 4 ( 1 ) ( − 1 ) = 20
r = − 4 ± 20 2 ( 1 ) = − 2 ± 5 r=\dfrac{-4\pm\sqrt{20}}{2(1)}=-2\pm \sqrt{5} r = 2 ( 1 ) − 4 ± 20 = − 2 ± 5 The general solution of the homogeneous differential equation is
y = C 1 e ( − 2 − 5 ) x + C 2 e ( − 2 + 5 ) x y=C_1e^{(-2-\sqrt{5})x}+C_2e^{(-2+\sqrt{5})x} y = C 1 e ( − 2 − 5 ) x + C 2 e ( − 2 + 5 ) x
Find the particular solution of the non-homogeneous differential equation
y p = A + B e 2 x y_p=A+Be^{2x} y p = A + B e 2 x
y p ′ = 2 B e 2 x y_p'=2Be^{2x} y p ′ = 2 B e 2 x
y p ′ ′ = 4 B e 2 x y_p''=4Be^{2x} y p ′′ = 4 B e 2 x Substitute
4 B e 2 x + 4 ( 2 B e 2 x ) − ( A + B e 2 x ) = 14 + 6 e 2 x 4Be^{2x}+4(2Be^{2x})-(A+Be^{2x})=14+6e^{2x} 4 B e 2 x + 4 ( 2 B e 2 x ) − ( A + B e 2 x ) = 14 + 6 e 2 x
− A + 11 B e 2 x = 14 + 6 e 2 x -A+11Be^{2x}=14+6e^{2x} − A + 11 B e 2 x = 14 + 6 e 2 x
A = − 14 , B = 6 11 A=-14, B=\dfrac{6}{11} A = − 14 , B = 11 6 Then
y p = − 14 + 6 11 e 2 x y_p=-14+\dfrac{6}{11}e^{2x} y p = − 14 + 11 6 e 2 x The general solution of the given non-homogeneous differential equation is
y = y h + y p y=y_h+y_p y = y h + y p
y = C 1 e ( − 2 − 5 ) x + C 2 e ( − 2 + 5 ) x − 14 + 6 11 e 2 x y=C_1e^{(-2-\sqrt{5})x}+C_2e^{(-2+\sqrt{5})x}-14+\dfrac{6}{11}e^{2x} y = C 1 e ( − 2 − 5 ) x + C 2 e ( − 2 + 5 ) x − 14 + 11 6 e 2 x
Comments