Question #237105
Y"+4y'-y=14+6e2x
1
Expert's answer
2021-09-14T11:37:01-0400

The homogeneous differential equation


y+4yy=0y''+4y'-y=0

The corresponding (auxiliary) equation


r2+4r1=0r^2+4r-1=0

D=(4)24(1)(1)=20D=(4)^2-4(1)(-1)=20

r=4±202(1)=2±5r=\dfrac{-4\pm\sqrt{20}}{2(1)}=-2\pm \sqrt{5}

The general solution of the homogeneous differential equation is


y=C1e(25)x+C2e(2+5)xy=C_1e^{(-2-\sqrt{5})x}+C_2e^{(-2+\sqrt{5})x}


Find the particular solution of the non-homogeneous differential equation


yp=A+Be2xy_p=A+Be^{2x}

yp=2Be2xy_p'=2Be^{2x}

yp=4Be2xy_p''=4Be^{2x}

Substitute


4Be2x+4(2Be2x)(A+Be2x)=14+6e2x4Be^{2x}+4(2Be^{2x})-(A+Be^{2x})=14+6e^{2x}

A+11Be2x=14+6e2x-A+11Be^{2x}=14+6e^{2x}

A=14,B=611A=-14, B=\dfrac{6}{11}

Then


yp=14+611e2xy_p=-14+\dfrac{6}{11}e^{2x}

The general solution of the given non-homogeneous differential equation is


y=yh+ypy=y_h+y_p




y=C1e(25)x+C2e(2+5)x14+611e2xy=C_1e^{(-2-\sqrt{5})x}+C_2e^{(-2+\sqrt{5})x}-14+\dfrac{6}{11}e^{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS