Solve the following ordinary differential equation.
dy/dx = (x^3) sec y
dydx=x3.sec ydysec y=x3dxcos ydy=x3dx\frac{dy}{dx}=x^3. sec\ y \\\frac{dy}{sec \ y}=x^3dx \\ cos \ ydy=x^3dxdxdy=x3.sec ysec ydy=x3dxcos ydy=x3dx
Integrating both sides, we get
∫cos ydy=∫x3dx+csin y=x44+c\int cos \ ydy=\int x^3dx+c \\sin\ y=\frac{x^4}{4}+c∫cos ydy=∫x3dx+csin y=4x4+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments