y′′+2y′+2y=2
L{y′′+2y′+2y}=L{2}
(−y′(0)−sy(0)+s2Y(s))+2(−y(0)+sY(s))+2Y(s)=s2 Inserting the initial conditions and rearranging:
−1−0+s2Y(s)+2(−0+sY(s))+2Y(s)=s2
Y(s)(s2+2s+2)=s2+s
Y(s)=s(s2+2s+2)2+s
s(s2+2s+2)2+s=sA+s2+2s+2Bs+C
=s(s2+2s+2)As2+2As+2A+Bs2+Cs
s=0:2=2A=>A=1
s2:A+B=0=>B=−1
s1:2A+C=1=>C=−1
Y(s)=s1+s2+2s+2s−1
y(t)=L−1{Y(s)}=L−1{s1−(s+1)2+1s+1}
=1−e−tcost
Comments