Question #235141
Solve the initial value problem

y" + 2y + 2y = 2, 7(0) = 0,1(0)=1

using the method of Laplace Transform.
1
Expert's answer
2021-09-10T08:07:17-0400
y+2y+2y=2y''+2y'+2y=2

L{y+2y+2y}=L{2}L\{y''+2y'+2y\}=L\{2\}

(y(0)sy(0)+s2Y(s))+2(y(0)+sY(s))+2Y(s)=2s(-y'(0)-sy(0)+s^2Y(s))+2(-y(0)+sY(s))+2Y(s)=\dfrac{2}{s}

Inserting the initial conditions and rearranging:


10+s2Y(s)+2(0+sY(s))+2Y(s)=2s-1-0+s^2Y(s)+2(-0+sY(s))+2Y(s)=\dfrac{2}{s}

Y(s)(s2+2s+2)=2+ssY(s)(s^2+2s+2)=\dfrac{2+s}{s}

Y(s)=2+ss(s2+2s+2)Y(s)=\dfrac{2+s}{s(s^2+2s+2)}

2+ss(s2+2s+2)=As+Bs+Cs2+2s+2\dfrac{2+s}{s(s^2+2s+2)}=\dfrac{A}{s}+\dfrac{Bs+C}{s^2+2s+2}

=As2+2As+2A+Bs2+Css(s2+2s+2)=\dfrac{As^2+2As+2A+Bs^2+Cs}{s(s^2+2s+2)}

s=0:2=2A=>A=1s=0:2=2A=>A=1

s2:A+B=0=>B=1s^2:A+B=0=>B=-1

s1:2A+C=1=>C=1s^1:2A+C=1=>C=-1

Y(s)=1s+s1s2+2s+2Y(s)=\dfrac{1}{s}+\dfrac{s-1}{s^2+2s+2}

y(t)=L1{Y(s)}=L1{1ss+1(s+1)2+1}y(t)=L^{-1}\{Y(s)\}=L^{-1}\{\dfrac{1}{s}-\dfrac{s+1}{(s+1)^2+1}\}

=1etcost=1-e^{-t}\cos t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS