Question #235077
one of the solutiin of the equation (1-x^2) y''-2xy'+12y=0 is
Ans-P3(x)
1
Expert's answer
2021-09-10T00:02:58-0400

Let y=ax3+bx2+cx+d.y=ax^3+bx^2+cx+d. Then


y=3ax2+2bx+cy'=3ax^2+2bx+c

y=6ax+2by''=6ax+2b

Substitute


(1x2)(6ax+2b)2x(3ax2+2bx+c)(1-x^2) (6ax+2b)-2x(3ax^2+2bx+c)

+12(ax3+bx2+cx+d)=0+12(ax^3+bx^2+cx+d)=0

(6a6a+12a)x3+(2b4b+12b)x2(-6a-6a+12a)x^3+(-2b-4b+12b)x^2

+(6a2c+12c)x+2b+12d=0+(6a-2c+12c)x+2b+12d=0

x3:0=0x^3:0=0


x2:6b=0x^2:6b=0


x1:6a+10c=0x^1: 6a+10c=0


x0:2b+12d=0x^0: 2b+12d=0


c=35a,b=0,d=0c=-\dfrac{3}{5}a, b=0, d=0

y=ax335ax,aRy=ax^3-\dfrac{3}{5}ax, a\in\R



One of the solutiin of the given equation is


y=5x33xy=5x^3-3x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS