Question #234676
Determine the Green, s function and express the solution as a definite integral

-y''=f(x), y(0)=0, y'(1)=0
1
Expert's answer
2021-09-09T07:55:13-0400

Given IVP:


y(x)=f(x),y(0)=0,y(1)=0-y''(x)=f(x),\quad y(0)=0,\quad y(1)=0

The general solution of homogeneous equation

y(x)=c1+c2xy(x)=c_1+c_2x

Hence,

G(x,s)={c1+c2x,0xs,c3+c4x, s<x1.G(x,s)=\left\{\begin{matrix} c_1+c_2x,\quad 0\leq x\leq s, \\ c_3+c_4x,\ \quad s< x\leq 1. \end{matrix}\right.

Initial conditions give

G(0,s)=c1=0,G(1,s)=c4=c3G(0,s)=c_1=0,\quad G(1,s)=c_4=-c_3

So

G(x,s)={c2x,0xs,c3(1x), s<x1.G(x,s)=\left\{\begin{matrix} c_2x,\quad 0\leq x\leq s, \\ c_3(1-x),\ \quad s< x\leq 1. \end{matrix}\right.

The continuity of Green function gives

G(x,s)={x(s1),0xs,s(x1), s<x1.G(x,s)=\left\{\begin{matrix} x(s-1),\quad 0\leq x\leq s, \\ s(x-1),\ \quad s< x\leq 1. \end{matrix}\right.

The solution of DE

y(x)=01G(x,s)f(s)dsy(x)=\int_0^1G(x,s)f(s)ds

=0xx(s1)f(s)ds+x1s(x1)f(s)ds=\int_0^xx(s-1)f(s)ds+\int_x^1s(x-1)f(s)ds


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS