Given IVP:
−y′′(x)=f(x),y(0)=0,y(1)=0The general solution of homogeneous equation
y(x)=c1+c2xHence,
G(x,s)={c1+c2x,0≤x≤s,c3+c4x, s<x≤1.Initial conditions give
G(0,s)=c1=0,G(1,s)=c4=−c3So
G(x,s)={c2x,0≤x≤s,c3(1−x), s<x≤1.The continuity of Green function gives
G(x,s)={x(s−1),0≤x≤s,s(x−1), s<x≤1.The solution of DE
y(x)=∫01G(x,s)f(s)ds
=∫0xx(s−1)f(s)ds+∫x1s(x−1)f(s)ds
Comments