Find the general/particular solution of the following Differential Equations.
(Integrable Combinations)
1.) (xdy-ydx)/(x^2) = x^3 dx
xdy−ydxx2=x3dx⇒xdy−ydx=x5dx⇒xdydx−y=x5⇒dydx−yx=x4⇒y′−yx=x4\frac{{xdy - ydx}}{{{x^2}}} = {x^3}dx \Rightarrow xdy - ydx = {x^5}dx \Rightarrow x\frac{{dy}}{{dx}} - y = {x^5} \Rightarrow \frac{{dy}}{{dx}} - \frac{y}{x} = {x^4} \Rightarrow y' - \frac{y}{x} = {x^4}x2xdy−ydx=x3dx⇒xdy−ydx=x5dx⇒xdxdy−y=x5⇒dxdy−xy=x4⇒y′−xy=x4
Let
y=u(x)v(x)⇒y′=u′v+uv′y = u(x)v(x) \Rightarrow y' = u'v + uv'y=u(x)v(x)⇒y′=u′v+uv′
Then
u′v+uv′−uvx=x4⇒u′v+u(v′−vx)=x4u'v + uv' - \frac{{uv}}{x} = {x^4} \Rightarrow u'v + u\left( {v' - \frac{v}{x}} \right) = {x^4}u′v+uv′−xuv=x4⇒u′v+u(v′−xv)=x4
v′−vx=0⇒dvdx=vx⇒dvv=dxx⇒lnv=lnx⇒v=xv' - \frac{v}{x} = 0 \Rightarrow \frac{{dv}}{{dx}} = \frac{v}{x} \Rightarrow \frac{{dv}}{v} = \frac{{dx}}{x} \Rightarrow \ln v = \ln x \Rightarrow v = xv′−xv=0⇒dxdv=xv⇒vdv=xdx⇒lnv=lnx⇒v=x
u′x=x4⇒u′=x3⇒u=x44+Cu'x = {x^4} \Rightarrow u' = {x^3} \Rightarrow u = \frac{{{x^4}}}{4} + Cu′x=x4⇒u′=x3⇒u=4x4+C
y=uv=(x44+C)x=x54+Cxy = uv = \left( {\frac{{{x^4}}}{4} + C} \right)x = \frac{{{x^5}}}{4} + Cxy=uv=(4x4+C)x=4x5+Cx
Answer: y=x54+Cxy = \frac{{{x^5}}}{4} + Cxy=4x5+Cx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments