Question #233800

Find the general/particular solution of the following Differential Equations.


(Integrable Combinations)


1.) (xdy-ydx)/(x^2) = x^3 dx


1
Expert's answer
2021-09-13T14:36:22-0400

xdyydxx2=x3dxxdyydx=x5dxxdydxy=x5dydxyx=x4yyx=x4\frac{{xdy - ydx}}{{{x^2}}} = {x^3}dx \Rightarrow xdy - ydx = {x^5}dx \Rightarrow x\frac{{dy}}{{dx}} - y = {x^5} \Rightarrow \frac{{dy}}{{dx}} - \frac{y}{x} = {x^4} \Rightarrow y' - \frac{y}{x} = {x^4}

Let

y=u(x)v(x)y=uv+uvy = u(x)v(x) \Rightarrow y' = u'v + uv'

Then

uv+uvuvx=x4uv+u(vvx)=x4u'v + uv' - \frac{{uv}}{x} = {x^4} \Rightarrow u'v + u\left( {v' - \frac{v}{x}} \right) = {x^4}

Let

vvx=0dvdx=vxdvv=dxxlnv=lnxv=xv' - \frac{v}{x} = 0 \Rightarrow \frac{{dv}}{{dx}} = \frac{v}{x} \Rightarrow \frac{{dv}}{v} = \frac{{dx}}{x} \Rightarrow \ln v = \ln x \Rightarrow v = x

Then

ux=x4u=x3u=x44+Cu'x = {x^4} \Rightarrow u' = {x^3} \Rightarrow u = \frac{{{x^4}}}{4} + C

Then

y=uv=(x44+C)x=x54+Cxy = uv = \left( {\frac{{{x^4}}}{4} + C} \right)x = \frac{{{x^5}}}{4} + Cx

Answer: y=x54+Cxy = \frac{{{x^5}}}{4} + Cx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS