Question #233798

Find the general/particular solution of the following Differential Equations


(Non-Exact D.E)


(y - xy³)dx + xdy=0


1
Expert's answer
2021-09-12T18:13:22-0400

Rewrite in the form of a first order Bernoulli ODE


y+1xy=y3y'+\dfrac{1}{x}y=y^3

Substitute v=y13v=y^{1-3}


v=2y3yv'=-\dfrac{2}{y^3}y'

12v+1xv=1-\dfrac{1}{2}v'+\dfrac{1}{x}v=1

Integrating factor μ(x)=1x2\mu(x)=\dfrac{1}{x^2}


1x2v2x3v=2x2\dfrac{1}{x^2}v'-\dfrac{2}{x^3}v=-\dfrac{2}{x^2}


(vx2)=2x2(\dfrac{v}{x^2})'=-\dfrac{2}{x^2}

d(vx2)=2x2dx\int d(\dfrac{v}{x^2})=-\int\dfrac{2}{x^2}dx

vx2=2x+C\dfrac{v}{x^2}=\dfrac{2}{x}+C

v=2x+Cx2v=2x+Cx^2

Substitute back v=y2v=y^{-2}


y2=2x+Cx2y^{-2}=2x+Cx^2

y2=12x+Cx2y^2=\dfrac{1}{2x+Cx^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS