Question #233243

 Find the general solution of the equation y''− 4y'+ 13y = 0.


1
Expert's answer
2021-11-15T17:38:32-0500

Given y4y+13y=0The auxilliary equation is of the form m24m+13=0, using the quadratic formula we have m=4±16522=4±362=4±6i2=2±3iTherefore the general solution of the given differential is y(x)=e2x(Acos3x+Bsin3x) where A and B are constants.\text{Given } y'' - 4y'+13y = 0 \\ \text{The auxilliary equation is of the form } m^2 -4m + 13 = 0 \text{, using the quadratic formula we have } \\ m = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = 2 \pm 3i \\ \text{Therefore the general solution of the given differential is } \\ y(x) = \mathrm{e}^{2x} (A \cos 3x + B \sin 3x) \text{ where A and B are constants.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS