Question #233241

Solve the equation (dy/dx) − y = exy2

1
Expert's answer
2021-09-07T09:56:02-0400

dydxy=(ex)y2\frac{dy}{dx} - y = (e^x)y^2 ...(1)

taking y=1vy = \frac{1}{v}

dydx=1v2.dvdx\frac{dy}{dx}=-\frac{1}{v^2}.\frac{dv}{dx}

From (1)

1v2.dvdx1v=ex.1v2-\frac{1}{v^2}.\frac{dv}{dx}-\frac{1}{v}=e^x.\frac{1}{v^2}

dvdx+v=ex...(2)\frac{dv}{dx}+v=-e^x...(2)

The integrating factor =e1dx=ex=e^{\int1dx}=e^x

Thus, the solution of (2) is

v.ex=(ex).exdx+cv.e^x=\int(-e^x).e^xdx+c

v.ex=e2xdx+cv.e^x=-\int e^{2x}dx+c

v.ex=e2x2+cv.e^x=-\frac{ e^{2x}}{2}+c

exy=e2x2+c\frac{e^x}{y}=-\frac{ e^{2x}}{2}+c

1y=ex+2c.ex2\frac{1}{y}=\frac{ -e^{x}+2c.e^{-x}}{2}

y=2ex+2c.exy=\frac{2}{ -e^{x}+2c.e^{-x}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS