Let u=(siny−ysinx)dx and v=(cosx+xcosy−y)dy∂y∂(siny−ysinx)=cosy−sinx∂x∂(cosx−xcosy−y)=cosy−sinxNext, we integrate u with respect to x∫(siny−ysinx)dx=xsiny+ycosx+h(y)−(1)Next, we differentiate the expression above with respect to yxcosy+cosx+h′(y)Comparing the expression above to v, we havexcosy+cosx+h′(y)=cosx+xcosy−y⟹h′(y)=−y∴h(y)=−2y2Substituting h(y) in (1), we have thatxsiny+ycosx−2y2Hence the the solution of the differential equation isxsiny+ycosx−2y2=c
Comments