Question #233238
Use the integrating factor to solve the differential equation. dz/dy = z tan y + sin y
1
Expert's answer
2021-09-07T03:12:13-0400
dzdyztany=siny\dfrac{dz}{dy}-z\tan y=\sin y

The integrating factor: μ(y)=cosy\mu(y)=\cos y


cosydzdyz(cosy)(tany)=cosysiny\cos y\dfrac{dz}{dy}-z(\cos y)(\tan y)=\cos y\sin y


ddy((cosy)z)=zsiny+cosydzdy\dfrac{d}{dy}((\cos y)z)=-z\sin y+\cos y\dfrac{dz}{dy}

Then


ddy((cosy)z)+zsinyzsiny=cosysiny\dfrac{d}{dy}((\cos y)z)+z\sin y-z\sin y=\cos y\sin y

d((cosy)z)=cosysinydyd((\cos y)z)=\cos y\sin ydy

Integrate


d((cosy)z)=cosysinydy\int d((\cos y)z)=\int\cos y\sin ydy

(cosy)z=12sin2y+C(\cos y)z=\dfrac{1}{2}\sin ^2y+C

z=sin2y2cosy+Ccosyz=\dfrac{\sin ^2y}{2\cos y}+\dfrac{C}{\cos y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS