Consider the relation between Newton’s law that is applied to the volume Δ V \Delta V Δ V in the direction x x x :
Δ F = Δ m d v x d t \Delta F=\Delta m\frac{dv_{x}}{dt} Δ F = Δ m d t d v x (Newton' law)
Where, F F F : force acting on the element with volume Δ V \Delta V Δ V
Δ F x = − Δ p x Δ S x \Delta F_{x}=-\Delta p_{x}\Delta S_{x} Δ F x = − Δ p x Δ S x
= ( ∂ p ∂ x Δ x + ∂ p ∂ x d t ) Δ S x =(\frac{\partial p}{\partial x}\Delta x+\frac{\partial p}{\partial x}dt)\Delta S_{x} = ( ∂ x ∂ p Δ x + ∂ x ∂ p d t ) Δ S x
≃ − ∂ p ∂ x Δ V − Δ V ∂ p ∂ x = Δ m d v x d t \simeq -\frac{\partial p}{\partial x}\Delta V-\Delta V\frac{\partial p}{\partial x}=\Delta m\frac{dv_{x}}{dt} ≃ − ∂ x ∂ p Δ V − Δ V ∂ x ∂ p = Δ m d t d v x
as dt is small, it is not considered and Δ S x \Delta Sx Δ S x is in x x x direction so ΔyΔz and from Newton’s law
= ρ Δ V d v x d t =\rho \Delta V\frac{dv_{x}}{dt} = ρ Δ V d t d v x
From, d v x d t as ∂ v x ∂ t \frac{dv_{x}}{dt}\ \text{as}\ \frac{\partial v_{x}}{\partial t} d t d v x as ∂ t ∂ v x
d v x d t = ∂ v x ∂ t + v x ∂ v x ∂ x ≈ ∂ v x ∂ x − ∂ p ∂ x = ρ ∂ v x ∂ t \frac{dv_{x}}{dt}=\frac{\partial v_{x}}{\partial t}+v_{x}\frac{\partial v_{x}}{\partial x}\approx \frac{\partial v_{x}}{\partial x}-\frac{\partial p}{\partial x}=\rho \frac{\partial v_{x}}{\partial t} d t d v x = ∂ t ∂ v x + v x ∂ x ∂ v x ≈ ∂ x ∂ v x − ∂ x ∂ p = ρ ∂ t ∂ v x
Above equation is known as equation of motion.
− ∂ ∂ x ( ∂ p ∂ x ) = ∂ ∂ x ( ρ ∂ v x ∂ t ) -\frac{\partial }{\partial x}(\frac{\partial p}{\partial x})=\frac{\partial }{\partial x}(\rho \frac{\partial v_{x}}{\partial t}) − ∂ x ∂ ( ∂ x ∂ p ) = ∂ x ∂ ( ρ ∂ t ∂ v x )
− ∂ 2 p ∂ x 2 = ρ ∂ ∂ t ( − 1 K ∂ p ∂ t ) -\frac{\partial^2 p}{\partial x^2}=\rho \frac{\partial }{\partial t}(-\frac{1}{K}\frac{\partial p}{\partial t}) − ∂ x 2 ∂ 2 p = ρ ∂ t ∂ ( − K 1 ∂ t ∂ p ) (From conservation of mass)
∂ p 2 ∂ x 2 − ρ K ∂ 2 p ∂ t 2 = 0 \frac{\partial p^{2}}{\partial x^{2}}-\frac{\rho }{K}\frac{\partial^2 p}{\partial t^2}=0 ∂ x 2 ∂ p 2 − K ρ ∂ t 2 ∂ 2 p = 0
Where, K: bulk modulus
Rewriting the above equation:
∂ p 2 ∂ x 2 − 1 c 2 ∂ 2 p ∂ t 2 = 0 \frac{\partial p^{2}}{\partial x^{2}}-\frac{1}{c}^{2}\frac{\partial^2 p}{\partial t^2}=0 ∂ x 2 ∂ p 2 − c 1 2 ∂ t 2 ∂ 2 p = 0
Where, c: velocity of sound given as c = K ρ c=\sqrt{\frac{K}{\rho }} c = ρ K
Thus, above is the one-dimensional wave equation derivation.
Comments