(e^2x + 4) dy/dx = y
dxe2x+4=dyy\frac{dx}{e^{2x}+4}=\frac{dy}{y}e2x+4dx=ydy
Letz=e2x+4Let z=e^{2x}+4Letz=e2x+4
dz=2e2xdx=2(z−4)dxdz=2e^{2x}dx=2(z-4)dxdz=2e2xdx=2(z−4)dx
dx=dz2(z−4)dx=\frac{dz}{2(z-4)}dx=2(z−4)dz
dyy=dxz=dz2z(z−4)=1/8(1z−4−1z)dz\frac{dy}{y}=\frac{dx}{z}=\frac{dz}{2z(z-4)}=1/8(\frac{1}{z-4}-\frac{1}{z})dzydy=zdx=2z(z−4)dz=1/8(z−41−z1)dz
lny=1/8(ln(z−4)−lnz)+Clny=1/8(ln(z-4)-lnz)+Clny=1/8(ln(z−4)−lnz)+C
lny=1/8(2x−ln(e2x+4))+Clny=1/8(2x-ln(e^{2x}+4))+Clny=1/8(2x−ln(e2x+4))+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments