dr = b(cos(ϕ)dr + rsin(ϕ)dϕ)1 = b(cos(ϕ) + rsin(ϕ)drdϕ)b sin(ϕ)(1−bcos(ϕ)) = ( rdrdϕ)b(1−bcos(ϕ))sin(ϕ) dϕ = ( rdr)∫(1−bcos(ϕ))d(1−bcos(ϕ) ) = ∫d(ln(r))ln(1−bcos(ϕ) ) = ln(r)+ln(C)ln(1−bcos(ϕ) ) = ln(Cr)1−bcos(ϕ) =Cr (where C is an abitrarily constant)
Comments