Question #232404

y ln x ln y dx + dy = 0


1
Expert's answer
2021-09-02T07:25:47-0400
ylnylnxdx+dy=0y\ln y\ln x dx+dy=0

dyylny=lnxdx\dfrac{dy}{y\ln y}=-\ln xdx

Integrate


dyylny=lnxdx\int\dfrac{dy}{y\ln y}=-\int\ln xdx

lnxdx=xlnxx(1x)dx=xlnxxlnC\int\ln xdx=x\ln x-\int x(\dfrac{1}{x})dx=x\ln x-x-\ln C

ln(lny)=xlnx+x+lnC\ln(|\ln y|)=-x\ln x+x+\ln C

lny=C(exxlnx)\ln y=C(e^{x-x\ln x})

y=eC(exxlnx)y=e^{C(e^{x-x\ln x})}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS