Question #232366
How do we solve y''+y=cos x by variation of parameters method?
1
Expert's answer
2021-09-02T07:25:41-0400

The homogeneous differential equation


y+y=0y''+y=0

Characteristic (auxiliary) equation


r2+1=0r^2+1=0

r=±ir=\pm i

The general solution of the homogeneous differential equation is


yh=C1cosx+C2sinxy_h=C_1\cos x+C_2\sin x




W(y1,y2)=y1y2y1y2=cosxsinxsinxcosxW(y_1, y_2)=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix}


=cos2x+sin2x=1=\cos^2x+\sin^2x=1

W1=0y2cosxy2=0sinxcosxcosx=sinxcosxW_1=\begin{vmatrix} 0 & y_2 \\ \cos x& y_2' \end{vmatrix}=\begin{vmatrix} 0 & \sin x \\ \cos x & \cos x \end{vmatrix}=-\sin x\cos x


W2=y10y1cosx=cosx0sinxcosx=cos2xW_2=\begin{vmatrix} y_1 & 0 \\ y_1' & \cos x \end{vmatrix}=\begin{vmatrix} \cos x & 0 \\ -\sin x & \cos x \end{vmatrix}=\cos^2 x

C1=W1W(y1,y2)=sinxcosx1=sinxcosxC_1'=\dfrac{W_1}{W(y_1, y_2)}=\dfrac{-\sin x\cos x}{1}=-\sin x\cos x

C1=(sinxcosx)dx=12sin2x+C3C_1=\int(-\sin x\cos x)dx=-\dfrac{1}{2}\sin^2x+C_3

C2=W2W(y1,y2)=cos2x1=cos2xC_2'=\dfrac{W_2}{W(y_1, y_2)}=\dfrac{\cos^2 x}{1}=\cos^2x


C2=(cos2x)dx=12(1+cos(2x))dxC_2=\int(\cos^2 x)dx=\dfrac{1}{2}\int(1+\cos(2 x))dx

=12x+14sin(2x)+C4=12x+12sinxcosx+C4=\dfrac{1}{2}x+\dfrac{1}{4}\sin(2x)+C_4=\dfrac{1}{2}x+\dfrac{1}{2}\sin x\cos x+C_4


y=(12sin2x+C3)cosxy=(-\dfrac{1}{2}\sin^2x+C_3)\cos x

+(12x+12sinxcosx+C4)sinx+(\dfrac{1}{2}x+\dfrac{1}{2}\sin x\cos x+C_4)\sin x

The general solution of the given differential equation is


y=C3cosx+C4sinx+xsinx2y=C_3\cos x+C_4\sin x+\dfrac{x\sin x}{2}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS