The homogeneous differential equation
y′′+y=0 Characteristic (auxiliary) equation
r2+1=0
r=±i The general solution of the homogeneous differential equation is
yh=C1cosx+C2sinx
W(y1,y2)=∣∣y1y1′y2y2′∣∣=∣∣cosx−sinxsinxcosx∣∣
=cos2x+sin2x=1
W1=∣∣0cosxy2y2′∣∣=∣∣0cosxsinxcosx∣∣=−sinxcosx
W2=∣∣y1y1′0cosx∣∣=∣∣cosx−sinx0cosx∣∣=cos2x
C1′=W(y1,y2)W1=1−sinxcosx=−sinxcosx
C1=∫(−sinxcosx)dx=−21sin2x+C3
C2′=W(y1,y2)W2=1cos2x=cos2x
C2=∫(cos2x)dx=21∫(1+cos(2x))dx
=21x+41sin(2x)+C4=21x+21sinxcosx+C4
y=(−21sin2x+C3)cosx
+(21x+21sinxcosx+C4)sinx
The general solution of the given differential equation is
y=C3cosx+C4sinx+2xsinx
Comments