Question #232070
(X^2) y"-2(x^2+x) y'+(x^2+2x+2) y=0
1
Expert's answer
2021-09-16T00:46:27-0400

Solution;

Assume;

y=n=0anxr+ny=\displaystyle\sum_{n=0}^{\infin}a_nx^{r+n}

y=n=0an(r+n)xr+n1y'=\displaystyle\sum_{n=0}^{\infin}a_n(r+n)x^{r+n-1}

y=n=0an(r+n)(r+n1)xr+n2y''=\displaystyle\sum_{n=0}^{\infin}a_n(r+n)(r+n-1)x^{r+n-2}

Substitute y,y' and y'' into the given equation to obtain;

n=0an(r+n)(r+n1)xr+nn=02an(r+n)xr+n+1n=02an(r+n)xr+n+n=0anxr+n+2+n=02anxr+n+1+n=02anxr+n\displaystyle\sum_{n=0}^{\infin}a_n(r+n)(r+n-1)x^{r+n}-\displaystyle\sum_{n=0}^{\infin}2a_n(r+n)x^{r+n+1}-\displaystyle\sum_{n=0}^{\infin}2a_n(r+n)x^{r+n}+\displaystyle\sum_{n=0}^{\infin}a_nx^{r+n+2}+\displaystyle\sum_{n=0}^{\infin}2a_nx^{r+n+1} +\displaystyle\sum_{n=0}^{\infin}2a_nx^{r+n}

We shift the terms as follows;

n=0an(r+n)(r+n1)xr+nn=12an1(r+n)xr+nn=02an(r+n)xr+n+n=2an2xr+n+n=12an1xr+n+n=02anxr+n\displaystyle\sum_{n=0}^{\infin}a_n(r+n)(r+n-1)x^{r+n} -\displaystyle\sum_{n=1}^{\infin}2a_{n-1}(r+n)x^{r+n} -\displaystyle\sum_{n=0}^{\infin}2a_n(r+n)x^{r+n}+\displaystyle\sum_{n=2}^{\infin}a_{n-2}x^{r+n}+\displaystyle\sum_{n=1}^{\infin}2a_{n-1}x^{r+n}+\displaystyle\sum_{n=0}^{\infin}2a_nx^{r+n}

At n=0;

a0[r(r1)2r+2]=0a_0[r(r-1)-2r+2]=0

But a00a_0\neq0

Hence;

r23r+2=0r^2-3r+2=0

(r2)(r1)=0(r-2)(r-1)=0

Therefore;

r=2 or 1

At n=1;

a1(r+1)r2a0(r+1)2a1(r+1)+2a0+2a1=0a_1(r+1)r-2a_0(r+1)-2a_1(r+1)+2a_0+2a_1=0

a1r2+a1r2a0r2a02a1r2a1+2a0+2a1=0a_1r^2+a_1r-2a_0r-2a_0-2a_1r-2a_1+2a_0+2a_1=0

Simplify as;

a1(r2+r2r)2a0r=0a_1(r^2+r-2r)-2a_0r=0

a1=2a0rr(r1)a_1=\frac{2a_0r}{r(r-1)}

To solve ,we take r=2;

a1=2a0a_1=2a_0

At n=2 ,all terms produces,hence we have a general formula;

an(r+n)(r+n1)2an1(r+n)2an(r+n)+an2+2an1+2an=0a_n(r+n)(r+n-1)-2a_{n-1}(r+n)-2a_n(r+n)+a_{n-2}+2a_{n-1}+2a_n=0

Combine as follows;

an[(2+n)(n+1)2(2+n)+2]=2an1[2+n+2]+an2a_n[(2+n)(n+1)-2(2+n)+2]=2a_{n-1}[2+n+2]+a_{n-2}

Hence;

an=2an1(4+n)+an2(2+n)(n+1)2(n+2)+2a_n=\frac{2a_{n-1}(4+n)+a_{n-2}}{(2+n)(n+1)-2(n+2)+2}

This is the recurrence relationship using r=2;

Hence we find other terms;

n=2;

a2=2a1(6)+a04.38+2a_2=\frac{2a_1(6)+a_0}{4.3-8+2} =12a1+a06\frac{12a_1+a_0}{6}

Since a1=2a0a_1=2a_0 ,by substitution;

a2=25a06a_2=\frac{25a_0}{6}

When n=3;

a3=2a2(8)+a15.410+2=14a2+a112a_3=\frac{2a_2(8)+a_1}{5.4-10+2}=\frac{14a_2+a_1}{12}

By substitution ;

a3=181a036a_3=\frac{181a_0}{36}

When n=4;

a4=2a3(8)+a26.516+2=16a3+a220a_4=\frac{2a_3(8)+a_2}{6.5-16+2}=\frac{16a_3+a_2}{20}

By substitution;

a4=1523360a0a_4=\frac{1523}{360}a_0

The solution of the equation becomes;

y=x2n=0anxny=x^2\displaystyle\sum_{n=0}^{\infin}a_nx^{n}

Hence ;

y=x2[a0+2a0x+25a06x2+18136a0x3+1523360a0x4+...y=x^2[a_0+2a_0x+\frac{25a_0}{6}x^2+\frac{181}{36}a_0x^3+\frac{1523}{360}a_0x^4+...






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS