Solution;
Assume;
y=n=0∑∞anxr+n
y′=n=0∑∞an(r+n)xr+n−1
y′′=n=0∑∞an(r+n)(r+n−1)xr+n−2
Substitute y,y' and y'' into the given equation to obtain;
n=0∑∞an(r+n)(r+n−1)xr+n−n=0∑∞2an(r+n)xr+n+1−n=0∑∞2an(r+n)xr+n+n=0∑∞anxr+n+2+n=0∑∞2anxr+n+1+n=0∑∞2anxr+n
We shift the terms as follows;
n=0∑∞an(r+n)(r+n−1)xr+n−n=1∑∞2an−1(r+n)xr+n−n=0∑∞2an(r+n)xr+n+n=2∑∞an−2xr+n+n=1∑∞2an−1xr+n+n=0∑∞2anxr+n
At n=0;
a0[r(r−1)−2r+2]=0
But a0=0
Hence;
r2−3r+2=0
(r−2)(r−1)=0
Therefore;
r=2 or 1
At n=1;
a1(r+1)r−2a0(r+1)−2a1(r+1)+2a0+2a1=0
a1r2+a1r−2a0r−2a0−2a1r−2a1+2a0+2a1=0
Simplify as;
a1(r2+r−2r)−2a0r=0
a1=r(r−1)2a0r
To solve ,we take r=2;
a1=2a0
At n=2 ,all terms produces,hence we have a general formula;
an(r+n)(r+n−1)−2an−1(r+n)−2an(r+n)+an−2+2an−1+2an=0
Combine as follows;
an[(2+n)(n+1)−2(2+n)+2]=2an−1[2+n+2]+an−2
Hence;
an=(2+n)(n+1)−2(n+2)+22an−1(4+n)+an−2
This is the recurrence relationship using r=2;
Hence we find other terms;
n=2;
a2=4.3−8+22a1(6)+a0 =612a1+a0
Since a1=2a0 ,by substitution;
a2=625a0
When n=3;
a3=5.4−10+22a2(8)+a1=1214a2+a1
By substitution ;
a3=36181a0
When n=4;
a4=6.5−16+22a3(8)+a2=2016a3+a2
By substitution;
a4=3601523a0
The solution of the equation becomes;
y=x2n=0∑∞anxn
Hence ;
y=x2[a0+2a0x+625a0x2+36181a0x3+3601523a0x4+...
Comments