Question #231898

Solve the initial value problem.

2y” - 11y’ + 12y =0 ; where y(0) = 5 and y’(0) = 15


1
Expert's answer
2021-09-05T16:02:22-0400

Given, 2y11y+12y=0.2y''-11y'+12y=0.

Auxiliary equation,

2m211m+12=0(m4)(m32)=0m=4,322m^2-11m+12=0\\ (m-4)(m-\frac{3}{2})=0\\ m=4,\frac{3}{2}

Therefore, general solution is

y(x)=c1e4x+c2e32x.y=4c1e4x+32c2e32xy(x)=c_1e^{4x}+c_2e^{\frac{3}{2}x}.\\ y'=4c_1e^{4x}+\frac{3}{2}c_2e^{\frac{3}{2}x}

Given, the initial condition y(0)=5 and y(0)=15y(0)=5 \space and \space y'(0)=-15 .

y(0)=c1+c2    5=c1+c2andy(0)=4c1+32c2    15=4c1+32c2y(0)=c_1+c_2\\ \implies 5=c_1+c_2\\ and\\ y'(0)=4c_1+\frac{3}{2}c_2 \\ \implies -15= 4c_1+\frac{3}{2}c_2

Solving above two equations, we get

c1=9,c2=14c_1=-9, c_2=14

Therefore, particular solution of the given IVP is y(x)=9e4x+14e32xy(x)=-9e^{4x}+14e^{\frac{3}{2}x} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS