Given, 2y′′−11y′+12y=0.
Auxiliary equation,
2m2−11m+12=0(m−4)(m−23)=0m=4,23
Therefore, general solution is
y(x)=c1e4x+c2e23x.y′=4c1e4x+23c2e23x
Given, the initial condition y(0)=5 and y′(0)=−15 .
y(0)=c1+c2⟹5=c1+c2andy′(0)=4c1+23c2⟹−15=4c1+23c2
Solving above two equations, we get
c1=−9,c2=14
Therefore, particular solution of the given IVP is y(x)=−9e4x+14e23x .
Comments