Question #231897

Eliminate the arbitrary constants.

y = x + Aex + Be-2x

1
Expert's answer
2021-12-13T05:57:05-0500

Given:  y=x+Aex+Be2x....................(1)We  need  to  eliminate  the  two  constants  resulting    froma  second  order  ode.y=1+Aex2Be2x     ..............(2)y=Aex+4Be2x......................(3)add  (2)  and  (3)  we  have  y+y=1 +2 Aex+2Be2x  .............(4)multiply  (1)  by  2,we   have   2y=2x+2Aex+2Be2x...................(5)subtract   (5)   from  (4)y+y2y=1 +2 Aex+2Be2x 2 Aex2Be2x2xy+y2y=1 2xGiven\mathrm{:}\ \ y=x+Ae^x+Be^{-\mathrm{2}x}....................\left(\mathrm{1}\right) \\ We\ \ need\ \ to\ \ e\mathrm{lim}inate\ \ the\ \ two\ \ cons\mathrm{tan}ts\ \ resulting\ \ \ \ from \\ a\ \ \mathrm{sec}ond\ \ order\ \ ode. \\ y'=\mathrm{1}+Ae^x-\mathrm{2}Be^{-\mathrm{2}x}\ \ \ \ \ ..............\left(\mathrm{2}\right) \\ \\ y''=Ae^x+\mathrm{4}Be^{-\mathrm{2}x}......................\left(\mathrm{3}\right) \\ \\ add\ \ \left(\mathrm{2}\right)\ \ and\ \ \left(\mathrm{3}\right)\ \ \\ \\ we\ \ have\ \ y''+y'=\mathrm{1}\ +\mathrm{2}\ Ae^x+\mathrm{2}Be^{-\mathrm{2}x}\ \ .............\left(\mathrm{4}\right) \\ \\ multiply\ \ \left(\mathrm{1}\right)\ \ by\ \ \mathrm{2,} \\ \\ we\ \ \ have\ \ \ \mathrm{2}y=\mathrm{2}x+\mathrm{2}Ae^x+\mathrm{2}Be^{-\mathrm{2}x}...................\left(\mathrm{5}\right) \\ \\ subtract\ \ \ \left(\mathrm{5}\right)\ \ \ from\ \ \left(\mathrm{4}\right) \\ \\ y''+y'-\mathrm{2}y=\mathrm{1}\ +\mathrm{2}\ Ae^x+\mathrm{2}Be^{-\mathrm{2}x}\ -\mathrm{2}\ Ae^x-\mathrm{2}Be^{-\mathrm{2}x}-\mathrm{2}x \\ \\ y''+y'-\mathrm{2}y=\mathrm{1}\ -\mathrm{2}x \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS