show that y=ln (x) is a solution of xy" + y'=0.
y=lnxy=\ln xy=lnx , find
y′=1x,y′′=−1x2y'=\frac{1}{x}, y''=-\frac{1}{x^2}y′=x1,y′′=−x21
Substitute in equation
x⋅(−1x2)+1x=−1x+1x=0x\cdot (-\frac{1}{x^2})+\frac{1}{x}=-\frac{1}{x}+\frac{1}{x}=0x⋅(−x21)+x1=−x1+x1=0
so y=lnxy=\ln xy=lnx is a solution of xy′′+y′=0xy''+y'=0xy′′+y′=0.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments