Question #231585
Dx/y^2+z^2-x^2=dy/-2xy=dz/-2xy
1
Expert's answer
2021-09-01T12:58:16-0400

From the equation dy2xy=dz2xy\frac{dy}{-2xy}=\frac{dz}{-2xy} we can deduce that dy=dzdy=dz and that the function f1=yzf_1=y-z is the first integral of the given system.

Consider now the first equation dxy2+z2x2=dy2xy\frac{dx}{y^2+z^2-x^2}=\frac{dy}{-2xy}.

(1) 0=2xydx+dy(y2+z2x2)=y2(2xydxx2dyy2+(1+z2y2)dy)0=2xydx+dy(y^2+z^2-x^2)=y^2 \left( \frac{2xydx-x^2dy}{y^2} +(1+\frac{z^2}{y^2})dy\right)

But

(2) 2xydxx2dyy2=d(x2/y)\frac{2xydx-x^2dy}{y^2}=d(x^2/y)

(3) (1+z2y2)dy=(1+(yf1)2y2)dy=(22f1y+f12y2)dy=(1+\frac{z^2}{y^2})dy=(1+\frac{(y-f_1)^2}{y^2})dy=(2-\frac{2f_1}{y}+\frac{f_1^2}{y^2})dy=

=d(2y2f1logyf12/y)=d(2y-2f_1\log |y|-f_1^2/y)

Substituting eq.(2),(3) into eq.(1), we obtain d(x2/y+2y2f1logyf12/y)=0d(x^2/y+2y-2f_1\log |y|-f_1^2/y)=0

Therefore the function f2=x2/y+2y2(yz)logy(yz)2/yf_2=x^2/y+2y-2(y-z)\log |y|-(y-z)^2/y is also the integral of the given system.

df1df2=df1d(x2/y)+df1d(2y2f1logyf12/y)=df_1\wedge df_2=df_1\wedge d(x^2/y)+df_1\wedge d (2y-2f_1\log |y|-f_1^2/y)=

df1d(x2/y)+(1+z2y2)df1dy=df_1\wedge d(x^2/y)+(1+\frac{z^2}{y^2})df_1\wedge dy=

y2df1(2xydx+(y2+z2x2)dy)0y^{-2}df_1\wedge (2xydx+(y^2+z^2-x^2)dy)\ne 0 inside the open dense set

U={(x,y,z)R3:xy(y2+z2x2)0}U=\{(x,y,z)\in\mathbb{R}^3:xy(y^2+z^2-x^2)\ne0\}.

Therefore, the functions f1f_1 and f2f_2 are functionally independent in UU, and the complete integral for the given system in the domain UU can be given by the formula Φ(f1,f2)\Phi(f_1,f_2) with an arbitrary smooth function Φ\Phi.

Answer. Φ(yz,x2y1+2y2(yz)logyy1(yz)2)\Phi(y-z, x^2y^{-1}+2y-2(y-z)\log |y|-y^{-1}(y-z)^2) is the complete integral.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS